Cosmology with the SKA

Ben Wandelt

Institute for Astrophysics, Paris (IAP) Lagrange Institute, Paris (ILP) UPMC, Sorbonne Universités

Accessing many modes

Planck

Primordial quantum perturbations as seen in the Cosmic Microwave Background Dark matter distribution (simulated)

Benjamin Wandelt

All of cosmology on one slide

Large scale structure with SKA

Physics Dark energy dominates – acceleration

Structure lights up, reionization

Dark ages (absorption only)

Recombination (CMB is emitted)

Matter dominates

Radiation dominates End of inflation

Epoch of Reionization

For details \rightarrow B. Semelin, A. Fialkov's talks

credit: Yi Mao

Once detailed physics understood a sensitive probe of the statistics of small scale perturbations (Mao et al 2013)

Epoch of Reionization

For details \rightarrow B. Semelin, A. Fialkov's talks

credit: Yi Mao

Once detailed physics understood a sensitive probe of the statistics of small scale perturbations (Mao et al 2013)

Epoch of Reionization

For details \rightarrow B. Semelin, A. Fialkov's talks

Once detailed physics understood a sensitive probe of the statistics of small scale perturbations (Mao et al 2013)

credit: Yi Mao

Unique capability of SKA: high-res spectroscopic imaging of small-scale cosmic structure over a large redshift range

Bad news for cosmologists: Strong non-linear evolution destroys small information Good news for cosmologists: Non-linear evolution of large scale structure creates structure of underdense regions, ie voids, separated by filaments and walls

The cosmic web as seen by SDSS

The promise of cosmic voids

- Biggest "objects" in the Universe fill most of the volume!
- Simpler dynamics than high density regions
- Easier to link tracers to underlying dark matter
- The first regions in the universe dominated by dark energy
- If acceleration of the universe is caused by modified gravity it should act most strongly in voids.
- Neutrino signatures in profile?
- A free, additional observational probe in current and future surveys, including SKA
- Can be used to define new cosmological tests, measuring expansion history, etc.
- A new area for cosmological research

Lavaux & Wandelt 2012; Sutter et al. 2012, 2013, 2014; Pisani et al 2014, Hamaus et al 2014

Matter, galaxies, voids in simulation

Void observables – recent progress

- Voids definition in surveys
 - E.g. voids in the SDSS DR9: Sutter et al., arXiv:1310.7155
- Their properties can be characterized
 - Effect of sparse sampling and bias on voids: Sutter et al., arXiv: 1309.5087
- Voids are related to dark matter
 - Dark matter in galaxy voids: Sutter et al., arXiv: 1311.3301
- They can be used as LSS tracers
 - Void-galaxy cross-correlations, Hamaus et al. 2014
- Voids lens background galaxies
 - Gravitational lensing of voids in SDSS: Melchior et al., arXiv: 1309.2045
- Voids can be stacked to get real space information
 - Real-space profile reconstruction: Pisani et al., arXiv: 1306.3052
- Voids can be used to define new cosmological observables
 - Alcock-Paczinsky, static ruler, galaxy bias etc.
- \rightarrow www.cosmicvoids.net

Void number functions in BOSS-CMASS match mock surveys

Sutter et al., arXiv:1310.7155

Void ellipticities – semi-analytic theory matches data

Sutter et al., arXiv:1310.7155; DIVA: Lavaux & BDW (2010)

Observed void profiles well-modeled using 2LPT mocks

Sutter et al., arXiv:1310.7155

Dark energy constraint forecast using Alcock-Paczynski test with voids

BOSS data

for future data, such as EUCLID; voids alone yield double the combined FoM.

SKA and voids

- SKA galaxy survey + intensity mapping
- Current IM proposals target BAO (large volume, low contrast)
- Brightness temperature contrast is much larger for voids (10-20 Mpc), than for BAO
- Need 10x higher resolution than for BAO intensity mapping – easily achievable with SKA
- Potential to resolve void interiors and dynamics
- Focusing on underdense regions allows pushing analysis to smaller scales, increasing science return
- Lots of new applications to be explored

Superfast model of mildly non-linear density field: 2LPT+remapping

2LPTRM: Quantitative agreement of 2&3point functions down to k ~ 0.4 h/Mpc

Leclercq, Jasche, Gil-Marin, BDW 2013

Observables arise from the initial perturbation field

What if we could fit N-body simulations to data and infer initial conditions and dyamical histories for our Universe?

Fully Bayesian, non-linear reconstruction of initial conditions from Large Scale Structure probes 0.0010 0.2 0.2 0.2 -0.0024 0.1 0.1 0.1 -0.00320.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -0.0040x[Gpc/h]x[Gpc/h]x[Gpc/h]8.0 0.7 0.7 0.7 7.2 6.4 0.6 0.6 0.6 5.6 0.5 0.5 0.5 $\begin{array}{c} 4.8 \\ 4.0 \\ 1+\delta_{initial} \end{array}$ y[Gpc/h] y[Gpc/h] y[Gpc/h] 2.4 0.2 0.2 0.2 1.6 0.1 0.1 0.1 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 x[Gpc/h]x[Gpc/h]x[Gpc/h]8.0 0.7 0.7 0.7 7.2 0.6 0.6 0.6 6.4 5.6 stunoo 0.5 0.5 0.5 c/b] c/h] c/b] 0 0.4

Fully non-linear constrained dynamical history of our universe

Cosmic morphology

Reconstructed eigenvalues of the local shear tensor constrained by Sloan with gravity prior

```
(Leclercq, et al, in prep.)
```

Benjamin Wandelt

Take home messages

- There is more to life than BAO
 - SKA *uniquely* suited to cosmic web and voids since BAO intensity mapping experiments aim for large volume and low resolution
 - Tests of initial perturbations on small scales and during EoR
- New science potential from higher resolution large scale structure probes such as SKA using powerful priors that *know* about gravity

If there's time:

Power spectrum inference from radio interferometers using Gibbs sampling and

Probabilistic image reconstruction for radio interferometers

- Sutter, Wandelt, Malu (2011)
- Sutter et al., this months' issue of MNRAS, arXiv:1309.1469§

Gibbs sampling is a both power spectrum inference and non-linear Wiener filter

True image

Dirty Image

example: Einstein results

test images

Gibbs performs better than CLEAN

→ J.-L. Starck's talk
Similary underlying ideas:
Bayesian prior favors "sparse"
solutions