Cosmological Evolution of Neutral Gas Mass

Celine Peroux (Marseille)

Neutral Gas Mass Ω_{HI}

•

Neutral HI \rightarrow Molecular H₂ \rightarrow star formation

Observation in Absorption

Quasar
 Absorbers

(Pontzen et al. 2008)

Quasar Absorbers

- Selected on the basis of the cross-section of the neutral hydrogen gas
 - Selected regardless of luminosity, morphology, etc.
 - Observed at all redshifts
 - Physical properties (like HI, metallicity, etc.) are well constrained
 - Connect gas and stars in galaxies

Quasar Absorbers Zoo

QAL Category	log N(H I)	Notes
Lya forest	<17	IGM low overdensity ionized
Lyman limit systems (LLS)	17– <mark>1</mark> 9	
Sub-damped Lyman-α (sub-DLA)	19-20.3	
Damped Lyman-α (DLA) systems	>20.3	Galaxies overdense neutral

Quasar Absorbers Zoo

QAL Category	log N(H I)	Notes
Lya forest	<17	IGM low overdensity ionized
Lyman limit systems (LLS)	17–19	
Sub-damped Lyman-α (sub-DLA)	19–20.3	
Damped Lyman-a (DLA) systems	>20.3	Galaxies overdense neutral

Sub-DLAs Contribution

The UVES Sample

- High resolution ESO VLT/UVES advanced data products archival data
- A sample of 250 quasars is build ranging 0.2 <
 z_{em} < 6.3 (1560 hours of VLT time)
- hundreds of quasar absorbers
- ever-growing sample

Redshift Distribution

Column Density Distribution

Column Density Distribution for Quasar Absorbers

Constraints at z>2: no evolution

(Zafar et al., 2013b)

- role of sub-DLAs: N(HI)>10¹⁹
- possible bias by dust
- pencil beam approach
- z<2 poorly constrained
- z<2 is where much of the action is expected to take place

- role of sub-DLAs: N(HI)>1019
- possible bias by dust
- pencil beam approach
- z<2 poorly constrained
- z<2 is where much of the action is expected to take place

Dust Bias

(Vladilo & Peroux 2005)

Dust Bias

(Frank & Peroux 2010)

- role of sub-DLAs: N(HI)>1019
- possible bias by dust
- pencil beam approach
- z<2 poorly constrained
- z<2 is where much of the action is expected to take place

- role of sub-DLAs: N(HI)>1019
- possible bias by dust
- pencil beam approach
- z<2 poorly constrained
- z<2 is where much of the action is expected to take place

Star Formation Rate

- role of sub-DLAs: N(HI)>10¹⁹
- possible bias by dust
- pencil beam approach
- z<2 poorly constrained
- z<2 is where much of the action is expected to take place

(Zafar et al., 2013b)

LADUMA on MeerKAT

- 21 cm line emission
- direct detection z<0.6, stacked z<1.4
- 5000 hrs
- 0.9 deg² @ z=0; 5.4 deg² @ z=1.2
- Extended Chandra Deep Field South = already 4000 z known & 10,000-20,000 more needed

MALS on MeerKAT

- Absorption line survey for 21 cm and OH absorber
- >600 intervening abs @ z<1.8
- 4000 hrs, 2 hrs/pointing
- spatial resolution 10" @1GHz, spectral rms=0.7 mJy

WALLABY on ASKAP

- HI emission: direct detections + stacking IR 6dFGS
- 500,000 gal (1000 resolved); z<0.26 (lookback time ~ 3Gyr), mean z~0.05
- 9600 hrs; 8 hrs per pointing
- 30 000 deg² (75% of sky); N(HI)>1.7x10¹⁹ = sub-DLA

DINGO on ASKAP

- HI emission: deep (N(HI)>2.1x10¹⁸)/ ultra-deep (N(HI)>1.0x10¹⁸)
- 40,000 gal; 0.1<z<0.48 (lookback time ~ 4Gyr)
- 150 deg² @ z<0.26/
 60 deg² @ z<0.48
- T_exp=500/2500hrs per pointing
- on GAMA region

FLASH on ASKAP

- blind HI absorption line
- 150 000 los, 450 intervening abs, 600 associated abs; 0.5<z<1
- Texp total=1600 hrs, 2 hrs per field
- survey area = 2500 deg², N(HI)~3.4x10¹⁹; angular resolution = 30"

Conclusions

- Cosmological evolution of neutral gas mass is a key component to our understanding of galaxy evolution
- 21cm line provides an important probe up to z<2 in a so-far little-probed range
- new outcomes to expect from upcoming surveys (APERTIF...) and ultimately SKA
- intensity mapping [Chang et al. 2010]