

Université

Soph<mark>ia</mark> Antipolis

Nice

Reconstruction of Radio Interferometric Images

Presented by: Arwa Dabbech

PhD Supervisors: Chiara Ferrari, Eric Slezak (OCA) With the collaboration of: David Mary (OCA), Oleg Smirnov (SKA SA)

13-02-2014

Radio Measurements

Radio Data

Radio Data: Galaxy Clusters

Deconvolution issues

Radio Interferometric Problem

Radio Interferometric model (1D)

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}, \ \mathbf{n} \in \mathbb{R}^N$

Problem ill posed due to the missing information in the uv coverage

Infinity number of skies that can fit the Dirty map

Sparse Representations

- a sparse signal: most of its coefficients equal zero.
- a dictionary: a data representation space where the signal can be sparsified.
- an atom: a column of a dictionary of the same size as the signal.

Sparsity Promoting approachs

Synthesis Approach

The signal **x** is a linear combination of only **few** atoms of a given dictionary **S**.

 $\mathbf{x} = \mathbf{S}\gamma$, γ (synthesis coefficients vector) is sparse

Analysis Approach

The projection of a signal **x** in a given dictionary **A** is **sparse**.

 $\mathbf{A}^{T}\mathbf{x} = \mathbf{a}$, \mathbf{a} (analysis coefficients vector) is sparse

Sparsity Promoting approaches

Synthesis Approach

- + Intuitive design
- Time consuming

Analysis Approach

- + Robust to false detection
- Time consuming

Hybrid approach : iterative analysis then synthesis of the signal by **packets** of atoms in a greedy manner

The Model

$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} = \mathbf{H}\mathbf{X}\mathbf{1}_P + \mathbf{n}$, with $\mathbf{X}_i \ge \mathbf{0}$, $\forall i$ and $P \ll N$,

sparse synthesis problem with unknown atoms.

Dabbech et al. in prep

Analysis by Synthesis Approach

Dabbech et al. in prep

Simulations using MeqTrees software by (O. Smirnov)

Simulations of 2h & 8h MeerKat observations

SKY: simulated galaxy cluster

MeerKat, 8h Observations

Dirty Map

PSF

MeerKat, 2h Observations

Dirty Map

PSF

Conclusions

Results are promising!

Very good recovery of both compact and extended sources on realistic simulations & on real data (VLA, Kat7) as well

On going work

Taking into account the variation of the PSF in the field of view

Source catalog as output of the code

Thanks!

IUWT-analysis vector

Thanks!

Thanks!