

Square Kilometre Array – Science Goals

Robert Braun SKA Science Director 11th February 2014

32.25

E-ELT optical/IR

Program approved

Atacama Large Millimetre Array (ALMA): mm/submm Chajnantor Plateau @ 17,000 ft Operational now

James Webb Space Telescope: due for launch in 2018

Square Kilometre Array: radio Construction start 2017/18

More specialised "experiments"

Exploring the Universe with the world's largest radio telescope

50 MHz 100 MHz

1 GHz

How did we choose the site?

elescope

How did we choose the site?

Background Radiation at 131.0 MHz (mV/m)

Karoo Radio Astronomy Reserve

зe

Murchison Radio Astronomy Observatory

Shire of Murchison:

- 50,000 km²; size of the Netherlands
- 0 gazetted towns
- 29 sheep/cattle stations
- 110 population => 0.002 km⁻²

The Science Working Groups

Astrobiology ("The Cradle of Life")

- Project Scientist: Tyler Bourke
- Working Group Chair: Melvin Hoare

Galaxy Evolution – Continuum

- Project Scientist: Jeff Wagg
- Working Group Chairs: Nick Seymour & Isabella Prandoni

Cosmic Magnetism

- Project Scientist: Jimi Green
- Working Group Chairs: Melanie Johnston-Hollitt & Federica Govoni

Cosmology

- Project Scientist: Jeff Wagg
- Working Group Chair: Roy Maartens

Epoch of Reionisation & the Cosmic Dawn

- Project Scientist: Jeff Wagg
- Working Group Chair: Leon Koopmans

Galaxy Evolution – HI

- Project Scientist: Jimi Green
- Working Group Chairs: Lister Staveley-Smith & Tom Osterloo

Pulsars ("Strong field tests of gravity")

- Project Scientist: Jimi Green
- Working Group Chairs: Ben Stappers & Michael Kramer

Transients

- Project Scientist: Tyler Bourke
- Working Group Chair: Rob Fender

How does SKA1 baseline redefine state-of-art?

		JVLA	MeerKAT	SKA1- mid	ASKAP	SKA1- survey	LOFAR- NL	SKA1- low
Aeff/Tsys	m ² /K	265	321	1630	65	391	61	1000
Survey FoV	deg ²	0.14	0.48	0.39	30	18	6	6
Survey Speed FoM	deg ² m ⁴ K ⁻²	0.98×10 ⁴	5.0×10 ⁴	1.0×10 ⁶	1.3×10 ⁵	2.8×10 ⁶	2.2×10 ⁴	6.0×10 ⁶
Resolution	arcsec	1.4	11	0.22	7	0.9	5	11
A _{eff} /T _{sys:} Survey Speed:				6xJVLA 6xASKAP 16xLOFAR 100x 22xASKAP 270x 280xJVLA				

Sensitivity comparison

Survey speed comparison

SKA1: facility versus "experiment"

Configuration optimisation for broad performance "sweet-spot"

SKA1 configurations

• SKA1-LOW possible configuration of core and remote spiral

SKA1 configurations

• SKA1-MID possible configuration of core and remote spiral

SKA1 configurations

• SKA1-SUR possible configuration of core and remote spiral

SKA Key Science

- Strong-field Tests of Gravity with Pulsars and Black Holes
 Phase 1 headline science
- Galaxy Evolution, Cosmology, & Dark Energy
 - Phase 1 headline science
- Emerging from the Dark Ages and the Epoch of Reionization
 Phase 1 headline science
- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

With design philosophy of *Exploration of the Unknown*

Cosmic Origins Probing the early universe with the 21cm HI Line

HI surveys of the EoR/Cosmic-Dawn Universe

- Detecting EoR structures in imaging mode (as distinct from statistically) on 5 arcmin scales with 1 mK RMS
- Probing the Cosmic Dawn statistically or possibly even imaging in ultradeep

Finding all pulsars in the Milky Way...

(Cordes et al. 2004, Kramer et al. 2004, Smits et al. 2008)

- ~30,000 normal pulsars
- ~2,000 millisecond psrs
- ~100 relativistic binaries
- first pulsars in Galactic Centre
- first extragalactic pulsars
- Timing precision is expected to increase by factor ~100
- Rare and exotic pulsars and binary systems: including PSR-BH systems!
- Testing cosmic censorship and no-hair theorem
- Current estimates are that ~50% of entire Galactic population in reach of SKA1

The transient radio sky

- Four celestial "FRB" events now detected (after first "Lorimer" burst): S = 0.5 - 1.3 Jy, $\Delta t = 1 - 6$ msec, DM = 550 - 1100 cm⁻³ pc
- Estimated event rate: 1x10⁴ sky⁻¹ day⁻¹
- Completely unknown origin, possibly at cosmological distances

A daily SKA1 all-sky transient survey

- Sensitivity for 2 msec bursts is 160x worse: 27 mJy, 8 mJy rms
- Computing strategy most still be developed for such a mode!
- Predicted FRB detections: 5 per day, with localisation to a fraction of arcsec

Cosmology with SKA1: Integrated Sachs-Wolfe effect

 Constraining non-Gaussianity of primordial fluctuations with the Integrated Sachs-Wolfe effect: correlation of foreground source populations with CMB structures

Cosmology with SKA1: Complementarity with Euclid

- Constraining non-Gaussianity of primordial fluctuations with the Integrated Sachs-Wolfe effect
- Achieving 2 μ Jy rms would provide \approx 4 galaxies arcmin⁻² (>10 σ)
- Almost uniform sky coverage of 3π sr is exceptional
- Major enhancement over Euclid alone

Cosmology with SKA1: Weak Gravitational Lensing

 Constraining the Dark Energy Equation of State with Weak Gravitational Lensing

Cosmology with SKA1: Complementarity with Euclid

- Constraining the Dark Energy equation of state with a weak gravitational lensing measurement of cosmic shear
- Achieving 1 µJy rms would provide ≈6 galaxies arcmin⁻² (>10σ)
- PSF is excellent quality circular Gaussian from about 0.6"
- Major enhancement in DE Figure-of-Merit

Cosmology with SKA1: Baryon Acoustic Oscillations

(Blake & Moorfield)

 Constraining Dark Energy models with redshift-resolved BAO measurements

A wide-field HI emission survey for BAO and $\Omega_{HI}(z)$

- Detect $10^{7.1}$ galaxies $\langle z \rangle \approx 0.3$, $10^{5.1}$ galaxies $\langle z \rangle \approx 1$
- Density \approx 2500 galaxies deg⁻², 1 arcmin⁻²
- Compare SDSS: $10^{6.2}$ galaxies with $\langle z \rangle \approx 0.1$ over 15,000 deg²
- Compare WigglesZ $10^{5.2}$ galaxies with $\langle z \rangle \approx 0.6$
- Major contribution to BAO science, complementary systematics versus Opt/IR

Cosmology with SKA1: complementarity with optical

(Papasterigis et al. 2013) ALFALFA HI versus SDSS blue and red samples

 Correlation functions of HI detections demonstrate much lower bias and excellent prospects for Redshift-space distortion measurements once interesting sample sizes are achieved with SKA1

An <u>SKA2</u> HI emission survey for precision Cosmology

- Detect $10^{8.9}$ galaxies with $\langle z \rangle \approx 1$, $10^{7.9}$ with $\langle z \rangle \approx 2$
- Compare Euclid (2020+5?) target of 10^8 spectra with $\langle z \rangle \approx 1$
- SKA2 will provide an unrivaled capability for precision cosmology!

SKA Key Science

- Strong-field Tests of Gravity with Pulsars and Black Holes
 Unique GR constraints, major contributions in Phase 1 and Phase 2
- Galaxy Evolution, Cosmology, & Dark Energy

Cutting edge contributions in non-Gaussianity and Dark Energy Complementarity to Euclid, LSST in Phase 1 (reduced systematics) Unmatched performance in Phase 2 (Billion Galaxy Surveys)

- Emerging from the Dark Ages and the Epoch of Reionization Unique EoR imaging capability in Phase 1 Reaching to Cosmic Dawn in Phase 2
- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

With design philosophy of *Exploration of the Unknown*

Unmatched prospects (complement to LSST) in Phase 1 and Phase 2

Thank you

www.skatelescope.org