Cosmic magnetism

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie,
Observatoire Midi-Pyrénées, Toulouse, France

Journées radio SKA-LOFAR
Paris – 11 - 13 February, 2014
Outline

1. Introduction

2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Outline

1. Introduction
2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies
3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Cosmic magnetic fields play an important role in the structure, dynamics, energetics & evolution of most astrophysical objects.

The best probes of cosmic magnetic fields are radio waves.

Cosmic magnetism is key science for the new and upcoming large radio telescopes.

- Magnetism KSP
- Cosmic Magnetism SWG
Introduction
Present observational status
Observations with LOFAR and SKA

LOFAR Key Science Project

Cosmic magnetism in the nearby universe

- Management team
 Rainer Beck (PI), George Heald, Anna Scaife

- 32 full members
 Germany [14], Netherlands [11], United Kingdom [3], Poland [2], Italy [1], Sweden [1]

- 60 associated members
 Germany [25], United Kingdom [10], Netherlands [5], Poland [5], Sweden [4],
 Australia [2], France [2], Japan [2], Canada [1], India [1], Italy [1], Korea [1], USA [1]
The origin and evolution of cosmic magnetism

- 2 co-chairs
 Federica Govoni, Melanie Johnston-Hollitt

- 23 members
 Italy [4], Australia [3], Germany [3], Netherlands [3], Canada [2], USA [2], France [1], Japan [1], South Africa [1], United Kingdom [1], SKA [2]
Outline

1. Introduction

2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Outline

1. Introduction

2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Present radio observations

- **Zeeman splitting**
 In neutral (molecular & atomic) regions
 \[\rightarrow B_{||} \text{ (strength & sign)} \]

- **Faraday rotation**
 In ionized regions
 \[\rightarrow B_{||} \text{ (strength & sign)} \]

- **Synchrotron emission**
 In general ISM
 \[\rightarrow \vec{B}_{\perp} \text{ (strength & orientation)} \]

- **Faraday tomography**
 Combines synchrotron emission & Faraday rotation
Faraday rotation of point sources

\[\Delta \theta = \text{RM} \, \lambda^2 \quad \text{where} \quad \text{RM} = C \int n_e \, B_{||} \, dl \]

⇒ \text{RM} \text{ probes } B_{||} \text{ in ionized regions}
The Milky Way

Diffuse synchrotron emission

\[\mathcal{E} = f(\alpha) \, n_{\text{rel}} \, B_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \& \quad \mathcal{E} \perp \mathbf{B}_{\perp} \]

\[\Rightarrow \quad \text{- Total intensity probes } B_{\perp} \quad \text{(strength only)} \]
\[\text{- Polarized intensity probes } (\mathbf{B}_{\text{ord}})_\perp \quad \text{(strength & orientation)} \]
Faraday tomography

- **Faraday rotation of background source**
 \[\Delta \theta = RM \lambda^2 \]
 with
 \[RM = C \int n_e B_{\parallel} \, dl \]
 (rotation measure)

![Diagram showing ISM and source with Faraday rotation](image)

- **Faraday rotation of diffuse synchrotron emission**
 Synchrotron emission & Faraday rotation are *spatially mixed*
 \[\tilde{P}(\lambda^2) = \int \tilde{P}(\Phi) \, e^{2i\Phi \lambda^2} \, d\Phi \]
 with
 \[\Phi = C \int n_e B_{\parallel} \, dl \]
 (Faraday depth)

 Fourier transform of polarized intensity:
 \[\tilde{P}(\lambda^2) \rightarrow \tilde{P}(\Phi) \]

![Diagram showing ISM and source with Fourier transform](image)

Credit: Marijke Haverkorn
Faraday tomography

Also known as rotation measure synthesis

(Burn 1966; Brentjens & de Bruyn 2005)

Figure Credit: Maik Wolleben
Outline

1. Introduction

2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Faraday rotation of point sources

\[\Delta \theta = \text{RM} \lambda^2 \quad \text{where} \quad \text{RM} = C \int n_e B_\parallel dl \]

\[\Rightarrow \text{RM} \quad \text{probes} \quad B_\parallel \quad \text{in ionized regions} \]

RM of pulsars & EGRSs with |b| < 8°

RM of EGRSs with \(\delta > -40° \)

Han (2009)

Taylor et al. (2009)
Faraday rotation of point sources

In ionized regions

- \vec{B} has *regular* & *fluctuating* components

 Near the Sun: $B_{\text{reg}} \approx 1.5 \mu\text{G}$ & $B_{\text{fluct}} \approx 5 \mu\text{G}$

- In Galactic disk: \vec{B}_{reg} is *horizontal* & mostly azimuthal

 Near the Sun: \vec{B}_{reg} is CW ($p \approx -8^\circ$)

 \vec{B}_{reg} reverses direction with decreasing radius

 \vec{B}_{reg} is neither pure ASS nor pure BSS

- In Galactic halo: \vec{B}_{reg} is CCW at $z > 0$ & CW at $z < 0$

 \vec{B}_{reg} has vertical component
Diffuse synchrotron emission

\[\mathcal{E} = f(\alpha) \, n_{\text{rel}} \, B_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{B}_{\perp} \]

\[\Rightarrow \quad \text{- Total intensity probes } B_{\perp} \quad (\text{strength only}) \]

\[\quad \text{- Polarized intensity probes } (\vec{B}_{\text{ord}})_{\perp} \quad (\text{strength & orientation}) \]

TI at 1.4 GHz
(25m Stockert + 30m Villa Elisa)

PI at 1.4 GHz
(26m DRAO + 30m Villa Elisa)

Figure Credit: **Tess Jaffe**
Diffuse synchrotron emission

\[\mathcal{E} = f(\alpha) \, n_{rel} \, B_{\perp}^{\alpha+1} \, \nu^{-\alpha} \quad \& \quad \mathcal{E} \perp \vec{B}_{\perp} \]

\(\Rightarrow \) - **Total intensity** probes \(B_{\perp} \) (strength only)
- **Polarized intensity** probes \((\vec{B}_{\text{ord}})_{\perp} \) (strength & orientation)

TI at 1.4 GHz (25m Stockert + 30m Villa Elisa)

PI at 23 GHz (WMAP)

Figure Credit: Tess Jaffe
In general ISM

- Near the Sun: $B_{\text{ord}} \sim 3 \, \mu G$ & $B_{\text{tot}} \sim 5 \, \mu G$
- In Molecular Ring: $B_{\text{tot}} \sim 7 \, \mu G$
- In Galactic disk: \mathbf{B}_{ord} is horizontal
- In Galactic halo: \mathbf{B}_{ord} has vertical component
- Global spatial distribution: $L_B \sim 12 \, \text{kpc}$ & $H_B \sim 4.5 \, \text{kpc}$
Introduction

Present observational status

- Radio observations
- The Milky Way
- External galaxies
- Clusters of galaxies

Observations with LOFAR and SKA

- LOFAR
- SKA
Magnetic fields in external galaxies

- **Spiral galaxies**
 - All spirals have large-scale, regular / ordered \vec{B}
 - In disk: $B_{\text{ord}} \sim (1 - 5) \mu G$ & $B_{\text{tot}} \sim (5 - 20) \mu G$
 - In halo: $B_{\text{tot}} \lesssim 10 \mu G$
 - Edge-on spirals \rightarrow In disk: \vec{B}_{ord} is horizontal
 - In halo: \vec{B}_{ord} is X-shaped
 - Face-on spirals \rightarrow \vec{B}_{ord} follows spiral arms

- **Elliptical galaxies**
 - No large-scale, regular / ordered \vec{B}
 - Only small-scale, fluctuating \vec{B}
 - $B_{\text{tot}} \sim$ a few μG
Edge-on spiral galaxy: NGC 891

- Total intensity contours
- \vec{B} vectors
- at λ 3.6 cm

 (100m Effelsberg)

- Optical image

 (CFHT)

© MPIfR Bonn (Krause 2009)
Face-on spiral galaxy: M 51

Total intensity contours
+ \vec{B} vectors
at λ 6 cm
(100m Effelsberg + VLA)

Optical image
(HST)

Fletcher et al. (2009)
Outline

1 Introduction

2 Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3 Observations with LOFAR and SKA
 - LOFAR
 - SKA
Magnetic fields in clusters of galaxies

- Clusters have an **intergalactic** magnetic field

- No large-scale, regular / ordered \vec{B}
 Only small-scale, fluctuating \vec{B}

- **Faraday rotation** $\leftarrow B \sim $ a few μG & $\ell_{\text{cor}} \sim $ a few 10 kpc

- **Synchrotron emission** $\rightarrow B_{\text{tot}} \sim (0.1 - 1) \mu G$
Outline

1. Introduction

2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Outline

1. Introduction
2. Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies
3. Observations with LOFAR and SKA
 - LOFAR
 - SKA
Low-frequency radio observations

- **Faraday rotation**
 \[\Delta \theta = \text{RM} \lambda^2 \]
 with \(\text{RM} \propto \int n_e B_{||} \, dl \)
 \(\Rightarrow \) Can probe small RMs \(\rightarrow \) regions with low \(n_e \) and weak \(B \)

- **Diffuse synchrotron emission**
 - Emission is *almost purely synchrotron* (no contamination by thermal emission)
 - \(\mathcal{E} \propto n_{\text{rel}} B_{\perp}^{\alpha+1} \nu^{-\alpha} \)
 \(\Rightarrow \) Can probe regions with low \(n_{\text{rel}} \) and weak \(B \)
 - \(\nu \propto E^2 B_{\perp} \) & \(t_{\text{syn}} \propto E^{-1} B_{\perp}^{-2} \)
 \(\Rightarrow \) Can probe *low-energy* CR electrons
 which live *longer* and propagate *farther* from their sources

- **Faraday tomography**
 - *High-resolution* Faraday-depth spectra
 - Strong *Faraday depolarization* (differential Faraday rotation & internal Faraday dispersion)
Low-frequency radio observations

Low frequencies are ideal to study magnetic fields in
- galactic outer disks & halos
- tails of interacting or stripped galaxies
- intergalactic medium
Galactic pulsars
- Strong polarized fluxes \rightarrow good polarization calibrators
- $B_\parallel \propto \frac{\text{RM/DM}}{} \rightarrow$ excellent accuracy on B_\parallel
- Expect $\gtrsim 1000$ new pulsars

Extragalactic point sources
- Expect $\approx 7 \times 10^6$ new sources at 200 MHz
- Most sources will be strongly Faraday depolarized
- Altogether, expect few new polarized sources
All-sky images in the 4 Stokes parameters

- Single core station (Effelsberg – 3 August, 2012)
- Single channel at 32 MHz, 200 kHz bandwidth
- 1.3 sec integration time, 11° resolution

Figure Credit: Rainer Beck (from Jana Köhler & James Anderson)
Faraday tomography of the Fan region

- LOFAR HBA
- Stokes U at 4 different Faraday depths

$\Phi = -1 \text{ rad m}^{-2}$
$\Phi = -2 \text{ rad m}^{-2}$
$\Phi = -3 \text{ rad m}^{-2}$
$\Phi = -5 \text{ rad m}^{-2}$

Iacobelli et al. (2013)
Nearby galaxies

16 nearby galaxies have already been observed

- M 33 (HBA & LBA, Cycle 0 DDT)
- M 51 (HBA, commissioning & Cycle 0)
- M 81, M 82 (HBA & LBA, Cycle 0)
- M 101 (HBA, Cycle 0)
- NGC 628 (HBA, Cycle 1)
- NGC 891 (HBA, commissioning)
- NGC 3079 (HBA, Cycle 0)
- NGC 3432 (HBA, Cycle 1)
- NGC 3627, NGC 3628 (HBA, Cycle 0)
- NGC 4631 (HBA, commissioning & Cycle 0)
- NGC 6946 (HBA, Cycle 0)
- IC 10 (HBA & LBA, Cycle 0)
- IC 342 (HBA & LBA, Cycle 0)
- Stefan’s Quintet (HBA, Cycle 0)

Credit: Rainer Beck (Cosmic Magnetism SKA 1 Assessment Workshop, January 2014)
Nearby galaxy M51

- **Total intensity image**
 - LOFAR HBA
 - 170 subbands in [120,180] MHz, 36 MHz total bandwidth
 - 6 h observation time, 20″ resolution

Figure Credit: *David Mulcahy*
Nearby galaxy M 51

- **Polarization image**
 - Diffuse polarized emission from Galactic foreground, not from M 51
 - Diffuse emission from M 51 is strongly *Faraday depolarized*
 - Only 4 resolved background polarized sources (not enough for RM grid)

- **Faraday tomography**
 - Strongest component in Faraday spectra due to instrumental polarization
 - One component due to Galactic foreground (Faraday screen)
 - One component internal to M 51
 - Several unresolved background polarized sources

Credit: Rainer Beck (Cosmic Magnetism SKA 1 Assessment Workshop, January 2014)
Nearby galaxies in the LOFAR HBA MSSS

MSSS = Multifrequency Snapshot Sky Survey (George Heald et al.)

Figure Credit: Rainer Beck (from Chris Chyży & MSSS Team)
Galaxies in the Virgo Cluster

LOFAR HBA

Figure Credit: Rainer Beck (from de Gasperin et al., in prep.)
Outline

1 Introduction

2 Present observational status
 - Radio observations
 - The Milky Way
 - External galaxies
 - Clusters of galaxies

3 Observations with LOFAR and SKA
 - LOFAR
 - SKA
Observations with SKA 1

- **Key SKA 1 observations**
 - Polarization all-sky survey at ~ 1 GHz
 - Polarization deep field at ~ 1 GHz
 - Deep targeted polarization observations of specific objects at lower and higher frequencies

- **Key science drivers**
 - Cosmic evolution of magnetic fields in galaxies and clusters
 - Detailed structure of magnetic fields in galaxies and clusters
 - Properties of magnetic fields in AGNs
 - Relation between supermassive black holes and their environment
 - Detection of magnetic fields in the Cosmic Web
 - Properties and relation to the large-scale structure

Credit: Federica Govoni (Cosmic Magnetism SKA 1 Assessment Workshop, January 2014)
Rotation measure grid

- High sensitivity, high resolution, whole sky coverage
 → All-sky, closely-spaced grid of RMs

- Observations at $\gtrsim 1$ GHz to reduce Faraday depolarization

- Expect $\approx 20\,000$ RMs of Galactic pulsars [$\approx 6 \text{ deg}^{-2}$ in GD], i.e., all Galactic pulsars beaming towards us
 (Smits et al. 2009)

- Expect $\approx (1 - 4) \times 10^7$ RMs of background polarized sources
 [$\approx (300 - 1\,000) \text{ deg}^{-2}$] with SKA 1
 (Larry Rudnick, SKA1 Assessment Workshop)

☞ Powerful tool to study cosmic magnetic fields at all redshifts
The Milky Way

- **Pulsar RMs** + distance estimates (from parallax or DMs)
 - 3D structure of large-scale \(\gtrsim 100 \text{ pc} \) magnetic field in GD
 - number & location of field reversals
 - magnetic spiral vs optical spiral

- **RM grid of extragalactic point sources**
 - structure of large-scale magnetic field in GH & outer GD
 - magnetic fields in SNRs & H\text{II} regions
 - power spectrum of magneto-ionic turbulence (down to \(\lesssim 1' \))

- **Faraday tomography**
 - high-resolution 3D map of local \(\lesssim 5 \text{ kpc} \) magnetic field
 - small-scale \(\gtrsim 0.1 \text{ pc} \) magnetic features
 - properties of magneto-ionic turbulence
External galaxies

Low-z galaxies

- Deep RM grid of background compact sources
- Mapping of diffuse (total + polarized) synchrotron emission
 + Faraday tomography (in the nearest galaxies)

- Nearest galaxies (LMC, SMC, M31)
 \[\sim 10^5 \text{ RMs} \text{ (deep obs.)} + \text{Faraday tomography} \]
 \[\rightarrow \text{ very detailed 3D map of magnetic field structure} \]

- Galaxies out to \(\sim 10 \text{ Mpc} \) (\(\sim 100 \) galaxies)
 \[\geq 100 \text{ RMs} + \text{synchrotron mapping} \]
 \[\rightarrow \text{3D reconstruction of large-scale magnetic field structure} \]

- Galaxies out to \(\sim 100 \text{ Mpc} \) (\(\sim 60,000 \) galaxies)
 \[\geq 10 \text{ RMs} \]
 \[\rightarrow \text{recognition of simple magnetic patterns (ASS, BSS...)} \]
External galaxies

- **Galaxies at** \(z \gtrsim 0.1 \)

 - Detailed study of individual galaxies
 - Too small (\(\lesssim 1' \)) for RM grid of background *compact* sources
 - RMs of background *extended* sources
 → maps of magnetic field structure
 → temporal evolution of galactic magnetic fields

- **RM statistics of (unresolved) Ly\(\alpha \) absorbers**
 → trends of \(\text{RM}_{\text{source}} \text{ vs } z \) & \(\text{RM}_{\text{Ly}\alpha} \text{ vs } z \) separately
 → evolution of magnetic fields in galaxies & protogalaxies
Clusters of galaxies

- **RM grid** of background compact sources
 - (~ 1000 RM behind a typical nearby cluster)
 - $+ \text{RM toward embedded sources}$
 - $\rightarrow \pm$ detailed map of magnetic field structure

- Detection/mapping of diffuse **synchrotron emission** (deep obs.)
 - \rightarrow estimates of magnetic field strength
 - map of magnetic field structure
 - global radial dependence of B