Forecasts of radio emission from the Cosmic Web

Franco Vazza (Hamburg Observatory)

in collaboration with

C. Ferrari (OCA)

M.Brüggen, A. Bonafede (HS)

C. Gheller (CSCS)

P.Wang (Nvidia)

+ SKA-LOW "Tiger Team"

Paris, 13.02.14

Scientific case:

SDSS survey

- About 90% of the total (gas+DM) mass of the Universe is contained in the Cosmic Web, and half of this in filaments
- Yet, the CW has been clearly imaged only in optical/IR (galaxy components)

The Planck Collab.13

GRAVITY PULL SHOCKS \rightarrow RELATIVISTIC ELECTRONS/PROTONS TURBULENCE \rightarrow MAGNETIC FIELD AMPLIFICATION

UNKNOWNS (at the scale of filaments):

PARTICLE ACCELERATION:

What is the efficiency?

Upper limits from clusters (-ray: FERMI)

- Diffusive shock acceleration (FERMI I) theory, calibrated with Supernovae
- <0.1-10% of conversion from shock kinetic energy
- It can be simulated with 2-fluid model.

MAGNETIC FIELDS:

What is the "seed" field? Dynamo efficiency?

- Loose constraints 10⁻⁹µG<B<1µG
- Difficult to simulate: "simple physics" but high resolution needed.

FV+12,13,14... see also Minati+,Pfrommer+

Can we observe filaments with the next generation of radio arrays? (FV,Ferrari,Brüggen,Bonafede...)

Electrons accelerated at shocks (0.01% , and injected by hadronic collisions (n²) → simulated self-consistently with ENZO+
 Magnetic field → attached in post-processing

LOFAR LBA (60 Mhz):

 The largest (10 Mpc) filaments can be entirely detected if B>0.5 Γ

No spectacular detection (so far)

→ the diffuse field should be $B \le 0.2$ Γ

WHAT WILL SKA SEE?

- Simulated volumes from our 2048^3 simulations from FV,
 Gheller & Brüggen 2014 (among the most resolved so far)
- Simulation of baseline sampling as a function of z, thermal and confusion noise threshold, cosmological dimming
- Detectability : > 3 (confusion/thermal) for SKA LOW MID - SUR

(based on SKA1-Imaging Science Performance by R.Braun)

Detected emission >3rms noise/confusion

B=0.1 μG

Different redshifts

<u>SKA-LOW :</u>

 Emission detectable ouside the virial radius of nearby clusters, down to z=0.1
 → confusion limit

<u>SKA-MID/SUR:</u>

- <u>NO</u> emission can be detected outside of the virial radius of clusters.
 - → missing baselines

HOW MUCH FLUX / SURFACE FROM THE FILAMENT CAN WE DETECT?

	array	configuration/strategy	frequency	beam size	field of view	min. baseline	sensitivity 1	sensitivity 2
	2218		[MHz]	[arcsec]	[degrees ²]	[m]	$[\mu Jy/beam]$	$[\mu Jy/arcsec^2]$
Γ	SKA-LOW-A	full.res+conf.	<mark>110</mark>	6	8	45	5.5	0.134
	SKA-LOW-B	full res+conf,1000 hr	300	3	8	45	0.5	0.490
L	SKA-LOW-C	full res+conf., survey	300	10	8	45	9	0.794
Î	SKA-MID-A	1000hr	1400	0.5	0.49	15	0.09	0.317
	SKA-MID-B	2 years	1400	0.5	0.49	15	5.8	20.475
	SKA-MID-C	1000 hr+tapering	1400	10	0.49	15	0.14	0.001
	SKA-MID-D	2 years+tapering	1400	10	0.49	15	8.8	0.077
1	SKA-SUR-A	1000hr	1200	1.0	18	15	0.4	0.353
	SKA-SUR-B	2years	1200	1.0	18	15	3.8	3.353
1	SKA-SUR-C	1000hr+tapering	1200	10	18	15	0.5	0.004
1	SKA-SUR-D	2years+tapering	1200	10	18	15	4.9	0.043

Larger volumes/statistics can enhance the detection of rare objects

Conclusions:

Thanks

The detection of cosmic filaments with the existing (LOFAR) and incoming (SKA) radio could be _ within reach

Any detection/non-detection will inform us about the seeding and amplification process of large-scale magnetic fields.

 \rightarrow SKA-LOW has best chances of detecting filaments for z<0.1

→ "beating confusion" in SKA-LOW could lead to dramatically enhanced detection of filaments

→ SKA-MID and SUR are not very well suited for this science case, because of missing baselines

FV, Gheller, Bruggen+14