

Françoise Combes Observatoire de Paris

12 February 2014

What do we want to know?

Matter in the Universe Dark matter/visible matter vs z

Dark energy: Is it varying with time?

How is the Universe re-ionized? End of the dark age: cosmic dawn, EoR

How do baryons assemble into the large-scale structures? Galaxy formation and evolution (mergers, cold accretion) Star formation history, quenching Environment: groups and galaxy clusters

Strong-gravity with pulsars and black holes

Related main issues : Euclid

1-What is dark energy: w

Equation of state and nature of DE, through expansion and growth rates, 5 tools: WL, BAO, RSD, CL, ISW

2-Gravity beyond Einstein: γ Testing modified gravity, by measuring growth rate exponent γ

3-The nature of dark matter, m_{\nu} Testing the CDM theory, and measuring neutrino mass

4- The seeds of cosmic structures Improve by a factor 20, n, σ_8 , f_{NL}

EUCLID Legacy

Wide survey 15 000 deg² Deep survey 40 deg² (+2mag)

12 billion sources (3σ)

50 million redshifts

A reservoir of targets for JWST,GAIA, ELT ALMA, Subaru, VLT, etc

Objects	Euclid	Before Euclid	
Galaxies at 1 <z<3 with<br="">precise mass measurement</z<3>	~2x10 ⁸	~5x10 ⁶	
Massive galaxies (1 <z<3))< th=""><th>Few hundreds</th><th>Few tenss</th></z<3))<>	Few hundreds	Few tenss	
Hα Emitters with metal abundance measurements at z~2-3	~4x10 ⁷ /10 ⁴	~104/~102?	
Galaxies in clusters of galaxies at z>1	~2x10 ⁴	~10 ³ ?	
Active Galactic Nuclei galaxies (0.7 <z<2)< th=""><th>~104</th><th><10³</th></z<2)<>	~104	<10 ³	
Dwarf galaxies	~10 ⁵		
T _{eff} ∼400K Y dwarfs	~few 10 ²	<10	
Lensing galaxies with arc and rings	~300,000	~10-100	
Quasars at z > 8	~30	None	

SLACS (~2010 - HST)

0	۲		-		1			-	
SDSS J1420+6010	5895 .0321-0939	\$555+301106+5208	SERE 11029+0420	\$295 J1143-0144	\$265 .0855+0411	1 STEE JOB41 + 5824	9395 20044+0113	\$255 21432+6317	SDSS J1451-0238
	ø			١	1		1	1	10
3055 22959+0410	5055 (1032) 5322	5055 J1443+0304	3035 31216+0630	3033 (2238-0754	5055 (1538+5817	3055-71134+6027	3035 42303+1422	5855 (4103+5322	5055 (1531-0105
1		•	1	٠	•*	۲	۰.		
3055 30912+003*	5895 J1204+C358	5655 31153+4612	50555 32541 +0000	5255 21400+0000	5055 30836+0913	SEGS 11033+4330	3030 20037-0940	5255 21432+6321	5003-00138+5035
0	()	505 - 11 (2 + 10)							
					and a second second			Contraction of the local division of the loc	SCORE AND AND
0)	-				-	6		
5055 ANS6+5100	5895 00822+2552	5855 71621+5971	5055 71630++520	\$855 01112+0820	5855 70252+0074	5055 71029 +1122	5055 2143044105	5855 (1436-0000	5055 2010441500
	6						١	•	
10000141615136	3845 01301915956	2003 10137+1519	5055 20216-0813	3095 00935-0003	2000-0000-0000	2022110321032	92995 2090314116	50%5 .0039-0034	5058-30157-0054

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Howai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakos (JPL/Caltech), S. Burles (MIT)

impact second of Person for the Pitter hanne and hitch IPCA

Will become an industry

Substructure study; high-z normal galaxies... Dark matter studies
→ Similar number per unit surface with SKA 100 000

Ground spectroscopy in synergy

HI spectroscopy will provide spectro-z catalogs for Euclid Ultimately 1 billion HI spectro-z (SKA2) With SKA-1 ~ 10% of SKA2

MOONS is ideal to provide the control sample for Euclid Euclid is ideal to provide deep near-IR photometry for MOONS

In addition to the ground photo-z Survey, with CFHT in the North DES, LSST in the South

E-ELT: very small FOV Will make follow-up of SKA and Euclid sources, with high resolution Complementary in science goals

Overlap in space, redshift

SKA-Euclid projects: (mainly <z>=1-2)

- –Euclid + SKA photometry + emission line galaxy analyses,
 –Euclid + SKA redshifts,
- -Euclid + SKA morphometry and astrometry

BAO: comparable galaxy numbers ?

Different biases: HI surveys are not cluster biased SKA: no bias from dust, stars.. Larger area covered in the sky (but less spatial resolution)

HI surveys for BAO with SKA-1

All sky survey: 4 10⁶ gal z=0.2 3π sr

Wide-field survey 2 10^6 gal z=0.6 5000 deg²

Deep-field survey 4 10^5 gal z=0.8 50 deg²

Euclid 10^8 gal at z~1

But photo-z, with 2 10⁵ spectro-z Pure sample, deep field

SKA will help to provide pure sample

WL, AGN -- Present status of radio surveys

HDF-N 5 x 5 arcmin area to I ~29thmagnitude

Fomalont et al., ApJ 475, L5 (1997)

6 sources detected by VLA with $S_{8.4} > 12 \mu Jy$ (50 hour observation)

Deep radio sky 10' size, @ 1.4GHz

1µJy top 100nJy bottom Left and Right Cosmic variance

FRI: green, double FRII: red, double

Beamed FRI: green dot Beamed FRII: red dot Star-forming: disk

Jackson 2004

Continuum surveys with SKA1

In 2yrs achieve 2 μ Jy rms would provide \approx 4 galaxies arcmin² (>10 σ)

PSF is excellent quality circular Gaussian from about 0.6 - 100''With almost uniform sky coverage of 3π sr

→ Total of **0.5 billion radio sources, for All sky survey** for weak lensing and Integrated Sachs Wolfe

For wide-field (5000 deg2) **2** μ Jy rms \approx 6 galaxies arcmin² (>10 σ) For deep-field (50deg2) **0.1** μ Jy rms, \approx 20 galaxies arcmin² (>10 σ)

Combining SKA1 (cont) & Euclid

f_{NL} indicator of non-gaussian fluctuations

Bacon 2013 ¹⁴

From ISW studies

 f_{NL} indicator of early-universe physics

Related main issues : JWST & ELT

Galaxy formation and evolution, physics and dynamics Surveys of galaxies at high and intermediate redshifts Mass assembly and star formation, mergers, cold accretion Quenching: supernovae and AGN feedback

Epoch of reionization

Early galaxies and black holes z=10-6 Absorption in front of QSO, GRB IGM

AGN and super-massive BH

Symbiotic growth with galaxies Physics of accretion

E-ELT, Euclid and SKA parameter space

Parameter	E-ELT	Euclid	SKA
FOV	Single object to 10' diameter patrol field	0.5 sq deg FOV ∼full sky survey	1 deg ² or larger @ 1 GHz 100 deg ² @ 0.1 GHz
λ range	Optical to mid-IR	Optical and NIR	Radio 2cm–4 m (0.07 – 10+ GHz)
Spatial resolution	~Few mas (with AO) to seeing limited	0.2"(VIS) to 0.3" (NIR)	30 arcmin (0.5 km, 4m) to 1 mas (3000 km, 2cm)
Spectral resolution	Broadband imaging to R~100,000 (TBD)	Broadband imaging R=250 slitless spectroscopy	
Location	Dec ~ - 29 Fully steerable mount	Orbit around L2 – restricted pointing at any time	Australia + S. Africa, Beam formation anywhere in sky

Simulations of EoR

Only simulations for now!

Synergy Euclid /SKA

Discovery of the QSO in the EoR

Geil & Wyithe 08

Detection of the HII region around the QSO, at high redshift

Will be studied in detail and depth by **JWST and ELT**

Also absorption studies

Are galaxies at z=7-10 able to re-ionize?

What is the first galaxy?

Candidates at z=10

<1 1.05 1.25 1.6 µm</pre>

Disappears at $\lambda = 1.4$ microns

Difficult observations, at the limit
Of present telescopes
→ JWST
6.5m, 2018

Detected in each sub-group₂₀ of observations

Galaxy formation and evolution

How galaxies assemble their mass? How much mass assembled in mergers? How much through gas accretion and secular evolution?

Star formation modes; main sequence, Starburst, mergers?

> Modes of Quenching SF and AGN feedback

Atomic hydrogen HI-21cm

Simulated sky, z=1, 3, 6

Obreschkow et al 09

z=3 scale x10 z=6 scale x100

240 Mpc comoving depth3 x 1 arcmin surface

HI line, and CO lines

AGN NLR, BLR

AGN-driven outflow in Mrk 231

AGN and starburst, Outflow 700Mo/yr

IRAM Ferruglio et al 2010

JWST-ELT Census of black-holes

Spatial resolution (5mas)= sphere of influence 10⁶ Mo BH at Virgo distance 10⁹ Mo BH at z~0.2

Corresponding Time-scales

- 2018 2021: construction of SKA1
- 2019/20: early science begins
- 2022 2025: construction of SKA2
- SKA operational for 50 years.

LSST: 2020-2022 Commissioning: 2022- Science! E-ELT: 2023. JWST: 2018. 2028

SKA footprint to scale /100,000

