

### The transients radio sky

- A glimpse of physics in extreme environments.
- Time domain astronomy: a huge discovery potential, recognised in all recent prospective reports. Testing relativity. Cosmic lighthouses for probing the IGM.
- Example of unexpected transients: Discovery of pulsar by J. Bell (Nobel for Hewish), SN1a, GRB, ...
- Even now, new type of transients are still discovered nowadays: TDEs and FRBs
- A huge variety of transients on very different timescales: X-ray binaries, pulsars, black holes at cosmological distance, atmospheric Y-ray flashes, exoplanets, EM signature of GW, the unknown, ...

# Two flavours of transients

#### Incoherent synchrotron emission

- Relatively slow variability
- Brightness temperature limited (10<sup>12</sup> K)
- Associated with all explosive events
- Strong potential for MW astronomy



#### **Detection: images**

#### **Coherent** emission

- Relatively fast variability
- High brightness temperature
  Often highly polarised
- Usually associated with pulsars ?



**Detection: time series** 

# **Slow Synchrotron Transients**

- Primarily explosive events or outflows Known source classes:
- Cataclysmic Variables (CVs)
- X-ray Binaries (XRBs)
- Magnetar outbursts
- Supernovae (SNe)
- Active Galactic Nuclei (AGN)
- Tidal disruption events (TDEs)
- Gamma-ray bursts (GRBs)
  - Some novae (usually thermal)
  - but do not forget the unknown !!





#### Typical evolution of a slow transient

- Shock-accelerated electrons and magnetic fields
- Important frequency evolution. Become optically thin later at lower frequencies (+lower flux also). Need high freq. SKA capabilities !!



#### Similar physics along the mass scale



#### Measuring the kinetic feedback with transient cosmic explosions

## Gamma-ray bursts

- Probes of distant Universe (could be seen to  $z \sim 25!$ )
- Estimated rate 10<sup>-6</sup> year<sup>-1</sup> galaxy<sup>-1</sup> Radio emission generated by afterglows

Prompt emission likely selfabsorbed at low frequencies



Key questions: **Physical parameters** Kinetic energy of explosion Density of circumburst medium Outflow geometry **Orphan afterglows Beaming fraction and total GRB** rate Radio loud vs radio quiet populations 70% show radio emission, 30% do not

## Tidal disruption events

- Star passing too close to a massive black hole
- Estimated rate 10<sup>-5</sup> year<sup>-1</sup> galaxy<sup>-1</sup>
- Probe of jet physics
  - Launching mechanism
  - Super-Eddington accretion rates





Possibly the most frequent synchr. transients (Frail et al. 2012)

# X-ray binaries I



Time

- Accreting black holes, neutron stars, white dwarfs
  - Do quiescent BHs host radio jets?
- What fraction of the liberated accretion power do they carry away?
- Broad-band emission ?
- Nature of very faint outbursts  $\int_{10^{30}}^{10^{31}} 10^{35}$  erg s-1)?

A few tens of outburst per year SKA: probing a significant fraction of the whole outburst duration for almost all BHs in our Galaxy. All flaring transient BHs accessible in the local Universe (possibly also up to Virgo @ 15 Mpc)



### X-ray binaries II

NSs and WDs: Is the accretion-ejection coupling universal?

How does jet launching depend on depth of potential well, presence of a stellar surface/magnetic field?





#### Ultra-luminous X-ray sources

- X-ray Luminosities  $>1.3 \times 10^{39}$  erg s<sup>-1</sup> (Eddington limit for a 10 M<sub> $\odot$ </sub> BH)
  - Are these stellar-mass BHs accreting at/above Eddington?
  - Is there evidence for massive BHs (HLX-1 with  $L_X Max \sim 10^{42} \text{ erg s}^{-1}$ )?
- --- Fundamental Plane to get BH masses
  - Probe accretion and ejection at Eddington rates
- Growth of quasars in early Universe
  - Feedback effect on surroundings (EoR)
- Needs sufficiently high resolution



# Magnetar giant outbursts

- Explosive injection of energy into ambient medium following rearrangement of B-field
- Bright synchrotron flares (SGR1806-20)
  - Collimated outflows
    - Probing magnetar giant flare up to 300 kpc.







### Transients in the SKA era

Radio transients



### Getting involved in transients

LOFAR Transient KP: All kind of transients: pulsars, slow transients, exoplanets, ...

- MeerKAT: ThunderKAT ) + TRAPUM

- ASKAP: VAST ) + CRAFT

[ Get in touch with me if interested

## Conclusions

- A variety of synchrotron transients with key questions on the extreme Universe: black holes, relativistic jets,...
  - Electromagnetic counterpart of a GW event
  - Probing the distant Universe
  - Do not forget the unknown, i.e. unexpected discoveries by opening new parameter space in the time domain with superb sensitivity.
- A lost of synergies with forthcoming MW facilities (e.g. LSST: millions of transients per night !!)