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Gravitational waves

Gravitational waves
I Simple consequence of General Relativity
I Transverse space time perturbations
I Travel at speed of light
I Produced by accelerated mass

basic optical layout of a GW
detector

beam splitter

photo-detector

laser resonant cavity
power

recycling
mirror

mirrors

17 W 500 W 10 kW

3
 k

m

Lx

yL
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10 ms

26 ms

Hanford (4km)

Livingston (4km)

Virgo (3km)

GEO (600m)
KAGRA 

GW same everywhere but propagation delayed
⇒ Reject spurious non-Gaussian glitches
3 omnidirectional detectors
→ sky localization by triangulation

antenna response
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A network of detectors – 2009/2010
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Most sensitive for GW in [50,500] Hz band
(Abadie et al., 2012b)
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What have we not seen?
two examples
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Results - binary coalescence

Search for coalescence of binary
neutron star and/or black hole (Abadie

et al., 2012a)

2005-2010 upper limits 2 orders of
magnitude above expectation
advanced detectors
→ ×103 increase in sensitive volume
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40 yr−1 detections expected (Abadie et al., 2010)

I Large uncertainties on astrophysical predictions: 0.4 − 400 yr−1

I Based on binary pulsars observation / population synthesis
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Results - isolated neutron stars
Young pulsars (neutron stars)

I Crab (SN 1054)
I Vela (SN ∼ 104 yr ago)
I ...

spin frequency is precisely observed in radio
The rotation period is decreasing
→ loss of rotational energy
less than 1% of Crab energy loss is due to GW
emission (Aasi et al., 2013a)

less than 10% of Vela energy loss is due to GW
emission (Aasi et al., 2013a)

Without any radio observation the limits on
energy loss higher by ∼ 102 − 103 (Abadie et al.,

2011)

⇒ EM observation enhance GW searches
sensitivity
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Network of “Advanced” detectors

x10

3 Advanced LIGO / Advanced Virgo → 2015
factor ∼ 10 improvement in sensitivity
factor ∼ 103 improvement in volume within reach
Reaching design sensitivity will take a few years

Advanced LIGO

Advanced Virgo

KAGRA construction underway → 5 detectors & 2020
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A fourth detector site helps with sky localization

Sky localization error regions: hundreds of deg2 → tens of deg2

Third Advanced LIGO detector planned in India 2020-2022

(Aasi et al., 2013b)

Michał Wąs (G1400114) 2014 February 12 9 / 17



default

Why EM counterparts?

Observe lower amplitude GW events
Additional information on astrophysical event
Requirement for transients:

I EM counterpart false alarm rate needs to be low
I ∆T – coincidence time window
I 100 deg2 – GW sky localization error

rate × ∆T × 100 deg2

40000 deg2 < 1

⇒ Probability that there is one false transient per GW trigger
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Main case scenario: neutron star merger

Expected progenitor of short hard
gamma ray bursts
Involves a relativistic jet
Advanced detectors range:
∼ 200 Mpc
Three potential radio counterparts:

BH

θobs

θj
Tidal Tail & Disk Wind

Ejecta−ISM Shock

Merger Ejecta 

v ~ 0.1−0.3 c

Optical (hours−days)

Kilonova
Optical (t ~ 1 day)

Jet−ISM Shock (Afterglow)

GRB
(t ~ 0.1−1 s)

Radio (weeks−years)

Radio (years)

(Metzger and Berger, 2012)

Prompt signal, seconds–minutes
On-axis afterglow, ∼ day, jet pointing at Earth
Off-axis afterglow, ∼ year, jet becomes non-relativistic
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Prompt signal, seconds–minutes
Several highly speculative scenarios (merger at 200 Mpc):

I Gravitationally excited MHD waves (Moortgat and Kuijpers, 2005)
• 50 MJy at 30 MHz

I Rotational energy of post-merger object (Pschirkov and Postnov, 2010)
• 10 kJy at 100 MHz

I Emission from PSR-like magnetosphere (Hansen and Lyutikov, 2001)
• 1 mJy at 400 MHz

I Order of magnitude: 10−6 of short GRB flux
• 10−6 erg cm−2 for 0.1 s → 1 kJy at 1 GHz

Radio delayed by propagation:
I DM=103 pc cm−3 → 13 min at 75 MHz
I GW trigger could be available with ∼ 1 minute latency

→ pointing information for LOFAR
Background

I Fast Radio Bursts (Thornton, 2013), rate = 0.2 day−1deg−2 at 3 Jy and
1.4 GHz

I If ∆T = 13 min, limiting coincidence rate is 1 day−1deg−2

⇒ need lower ∆T or higher radio flux threshold
I What is the transient sky at 100 MHz?
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On-axis afterglow, ∼ day
Observed for at least two short GRBs (050721 and 051221)
correspond to 10 mJy at 1-10 GHz
∼ 1 day delay and transient duration
∆T = 1 day → limiting rate ∼ 3 yr−1deg−2 ⇒ problematic
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Limiting coincidence rate
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Off-axis afterglow, ∼ year
Delay of ∼ 1 year, produce by jet after slow-down to sub-relativistic

→ 0.3 mJy at 1 GHz ⇒ ∼ same as background from SFR
lower flux, larger time window than on-axis

⇒ require better sky localization of source by other EM observations?
⇒ Can afterglows be distinguished from other transients (AGN, ...)?
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(Metzger and Berger, 2012)
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Practical aspects: GW trigger dissemination
Initially

I GW triggers shared with LIGO/Virgo partners (few minutes latency)
I Open call for MOU agreements with LIGO and Virgo for EM follow up
I Relevant for observations in 2015-2017
I http://www.ligo.org/science/GWEMalerts.php
I Deadline: February 16 (repeats every year)

After 4 published GW detections
I GW triggers available publicly with low-latency (GCN style)

Michał Wąs (G1400114) 2014 February 12 15 / 17

http://www.ligo.org/science/GWEMalerts.php


default

Case scenario 2: pulsar discoveries

Candidates for GW detection
(continuous emission or glitches)

I Vela, Crab, ...

millisecond pulsars
→ clocks for observation of very
low frequency (nHz) GWs

I pulsar timing arrays
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Conclusion

Advanced LIGO/Virgo expect to observe dozens of neutron star
mergers per year, in (2015) 2020
There is potential bright radio prompt emission

I LOFAR could be pointed to catch the rise time

GW detector have poor (10 − 100 deg2) sky localization for transients
I Prompt and afterglow observation limited by other transients in error region
I Off-axis afterglow observation unlikely

A detailed study of the prospects is needed
Pulsar detection/observation, both GW sources and parts of detector
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