Synergies between radio and gravitational wave observations

Michał Wąs
for the LIGO Scientific Collaboration and the Virgo collaboration
Journées radio SKA-LOFAR

Laboratoire d’Annecy-le-Vieux de Physique des Particules
Gravitational waves

- Gravitational waves
 - Simple consequence of General Relativity
 - Transverse space time perturbations
 - Travel at speed of light
 - Produced by accelerated mass

![Basic optical layout of a GW detector](image_url)

- Laser: 17 W
- Power recycling mirror: 500 W
- Resonant cavity: 10 kW
- Beam splitter 3 km
- Photo detector
- Mirrors L_x L_y

Michał Wąs (G1400114)
GW same everywhere but propagation delayed
⇒ Reject spurious non-Gaussian glitches
3 omnidirectional detectors
→ sky localization by triangulation
A network of detectors – 2009/2010

Most sensitive for GW in [50, 500] Hz band

(Abadie et al., 2012b)
What have we not seen?

two examples
Results - binary coalescence

- Search for coalescence of binary neutron star and/or black hole (Abadie et al., 2012a)
- 2005-2010 upper limits 2 orders of magnitude above expectation
- advanced detectors $\rightarrow \times 10^3$ increase in sensitive volume
- 40yr^{-1} detections expected (Abadie et al., 2010)
 - Large uncertainties on astrophysical predictions: $0.4 - 400 \text{yr}^{-1}$
 - Based on binary pulsars observation / population synthesis
Results - isolated neutron stars

- Young pulsars (neutron stars)
 - Crab (SN 1054)
 - Vela (SN $\sim 10^4$ yr ago)
 - ...

spin frequency is precisely observed in radio

- The rotation period is decreasing
 \rightarrow loss of rotational energy

- less than 1% of Crab energy loss is due to GW emission (Aasi et al., 2013a)

- less than 10% of Vela energy loss is due to GW emission (Aasi et al., 2013a)

- Without any radio observation the limits on energy loss higher by $\sim 10^2 - 10^3$ (Abadie et al., 2011)

\Rightarrow EM observation enhance GW searches sensitivity
Network of “Advanced” detectors

- 3 Advanced LIGO / Advanced Virgo → 2015
- factor ~ 10 improvement in sensitivity
- factor $\sim 10^3$ improvement in volume within reach
- Reaching design sensitivity will take a few years
- KAGRA construction underway → 5 detectors ~ 2020
A fourth detector site helps with sky localization

- Sky localization error regions: hundreds of deg$^2 \rightarrow$ tens of deg2
- Third Advanced LIGO detector planned in India 2020-2022

(Aasi et al., 2013b)
Why EM counterparts?

- Observe lower amplitude GW events
- Additional information on astrophysical event
- **Requirement for transients:**
 - EM counterpart false alarm rate needs to be low
 - ΔT – coincidence time window
 - 100 deg^2 – GW sky localization error

\[
\text{rate} \times \Delta T \times \frac{100 \text{ deg}^2}{40000 \text{ deg}^2} < 1
\]

⇒ Probability that there is one false transient per GW trigger
Main case scenario: neutron star merger

- Expected progenitor of short hard gamma ray bursts
- Involves a relativistic jet
- Advanced detectors range: \(\sim 200 \text{ Mpc} \)
- Three potential radio counterparts:
 - Prompt signal, seconds–minutes
 - On-axis afterglow, \(\sim \) day, jet pointing at Earth
 - Off-axis afterglow, \(\sim \) year, jet becomes non-relativistic

(From Metzger and Berger, 2012)
Prompt signal, seconds–minutes

- Several highly speculative scenarios (merger at 200 Mpc):
 - Gravitationally excited MHD waves (Moortgat and Kuijpers, 2005)
 - 50 MJy at 30 MHz
 - Rotational energy of post-merger object (Pschirkov and Postnov, 2010)
 - 10 kJy at 100 MHz
 - Emission from PSR-like magnetosphere (Hansen and Lyutikov, 2001)
 - 1 mJy at 400 MHz
 - Order of magnitude: 10^{-6} of short GRB flux
 - 10^{-6} erg cm$^{-2}$ for 0.1 s \rightarrow 1 kJy at 1 GHz

- Radio delayed by propagation:
 - DM=10^3 pc cm$^{-3}$ \rightarrow 13 min at 75 MHz
 - GW trigger could be available with \sim 1 minute latency
 \rightarrow pointing information for LOFAR

- Background
 - Fast Radio Bursts (Thornton, 2013), rate = 0.2 day$^{-1}$ deg$^{-2}$ at 3 Jy and 1.4 GHz
 - If $\Delta T = 13$ min, limiting coincidence rate is 1 day$^{-1}$ deg$^{-2}$
 \Rightarrow need lower ΔT or higher radio flux threshold
 - What is the transient sky at 100 MHz?
On-axis afterglow, \sim day

- Observed for at least two short GRBs (050721 and 051221)
- correspond to 10 mJy at 1-10 GHz
- \sim 1 day delay and transient duration
- $\Delta T = 1$ day \rightarrow limiting rate ~ 3 yr$^{-1}$deg$^{-2}$ \Rightarrow problematic
Off-axis afterglow, \(\sim \) year

- Delay of \(\sim 1 \) year, produce by jet after slow-down to sub-relativistic
 - 0.3 mJy at 1 GHz \(\Rightarrow \) \(\sim \) same as background from SFR
- lower flux, larger time window than on-axis
 - require better sky localization of source by other EM observations?
 - Can afterglows be distinguished from other transients (AGN, ...)?

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\caption{(Metzger and Berger, 2012)}
\end{figure}
Practical aspects: GW trigger dissemination

- Initially
 - GW triggers shared with LIGO/Virgo partners (few minutes latency)
 - Open call for MOU agreements with LIGO and Virgo for EM follow up
 - Relevant for observations in 2015-2017
 - Deadline: February 16 (repeats every year)

- After 4 published GW detections
 - GW triggers available publicly with low-latency (GCN style)
Case scenario 2: pulsar discoveries

- Candidates for GW detection (continuous emission or glitches)
 - Vela, Crab, ...
- Millisecond pulsars
 - clocks for observation of very low frequency (nHz) GWs
 - pulsar timing arrays
Conclusion

- Advanced LIGO/Virgo expect to observe dozens of neutron star mergers per year, in (2015) 2020
- There is potential bright radio prompt emission
 - LOFAR could be pointed to catch the rise time
- GW detector have poor $\left(10 - 100 \text{ deg}^2\right)$ sky localization for transients
 - Prompt and afterglow observation limited by other transients in error region
 - Off-axis afterglow observation unlikely
- A detailed study of the prospects is needed
- Pulsar detection/observation, both GW sources and parts of detector
References

Abadie, J. et al. (2010). Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quantum Grav., 27:173001.

