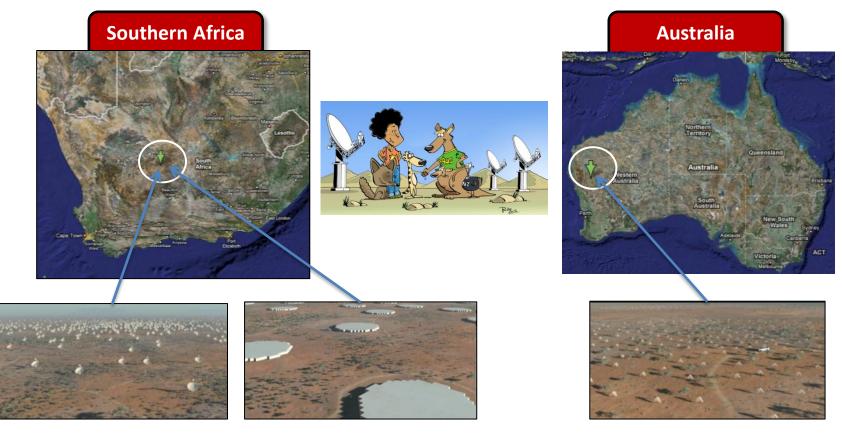


Towards building the SKA: timeline

It all takes time, but its Precursors will be ready soon:

SKA Road map:


- 2013-2016 Pre-Construction Phase, detailed design 2018-2022 construction of SKA1 - 10% of the SKA
- 2020 early science starts
- 2022-2025 construction of SKA2 "The" SKA

SKA Precursors:

- ASKAP (AUS) & MeerKAT (RSA) 2016
- + APERTIF (NL) 2015
- Interferometers: as they are being built out, their science cases evolve...

SKA Phase 2 (SKA2) – ultimate goal

SKA2_MID 2500 Dishes

SKA2_AA 250 x Mid Frequency Aperture Array Stations

SKA2_LOW 250 x Low Frequency Aperture Array Stations

SKA Phase 1 (SKA1)

SKA1_MID 254 Dishes including: 64 x MeerKAT dishes - precursor 190 x SKA dishes

SKA1_LOW 50 x Low Frequency Aperture Array Stations

SKA1_SURVEY 96 Dishes including: 36 x ASKAP - precursor 60 x SKA dishes with large FoV

SKA mid-frequency Precursor instruments I.

SKA dual site decision: South Africa & Australia

on each site an SKA Precursor is being built:

ASKAP in Australia **MeerKAT** in South Africa,

+ in the Netherlands; APERTIF upgrade of Westerbork

Will be operational in 2016/7 ; funding independent of SKA

SKA mid-frequency precursor instruments II.

The instruments will be complementary:

- ASKAP & MeerKAT: southern sky APERTIF: northern sky
- ASKAP and APERTIF have phased arrays: FoV 8-30 deg² \rightarrow all-sky surveys
- MeerKAT has a FoV of 1 deg², but larger bandwidth and surface \rightarrow higher sensitivity over smaller areas
- Collecting areas: 4000-8000 m²
 ASKAP: 36×12m, MeerKAT: 60×13m ; APERTIF: 12×25m dishes not larger than present telescopes, but two have much larger FoV

SKA: a revolution in radio astronomy

The SKA is designed for gigantic surveys

Example: HI surveys of galaxies

2014:30,000 detections, out to z~0,052020:1,000,000 detections, out to z~0.52028:1,000,000,000 detections, out to z~2

SKA Precursors SKA Phase 1 + 2

Wide-spread interest in these data, also from non-radio astronomers,

who need to be made aware of the SKA potential, and helped to prepare for using its data/results

Technology:

- SKADS (FP6 2005-2009) and PrepSKA (FP7 2008-2011)
- SKA Pre-Construction Phase Consortia (2012-2016) Nançay & Bordeaux: micro-electronics (13 FTE/yr)

Science:

- Simulations (science data; instruments)
- Observations, with

actual instruments, radio and others: till 2016 SKA Precursors : from 2017 SKA Phase 1: from 2020 SKA Phase 2: from 2024

France preparing for the SKA: who?

- France has a large astronomical community, but relatively less radio astronomers than some other countries;
 - = no problem: SKA is not only for radio astronomers, *au contraire*
- Leading the French community towards the SKA
 - is a role of our radio astronomy community:
 - training students, supervising postdocs leadership in surveys and projects helping non-experts find their way in radioland

multi-wavelength projects, access to many other telescopes; modeling

"Known" instruments:

dm: Nançay, interferometers (VLA, WSRT); mm: IRAM + ALMA extragalactic surveys, pulsars

SKA Pathfinders (now):

LOFAR: station in Nançay, plans for LOFAR Super Station surveys (planetary, pulsars, transients, galaxies, clusters) EMBRACE: SKA phased-array demonstrator in Nançay

SKA Precursors (2016):

Expressed French interest in 10 MeerKAT Large Proposals (2010): 80% are not radio astronomers...

MeerKAT Large Proposals call (2010):

- Expressed French interest in 10 Large Proposals (1000-8000 hours each)
- 27 astronomers, from 11 institutes

Bordeaux, Lyon, Marseille, Nice OCA, Orleans LPC2E, Paris Obs., Paris IAP, Saclay CEA, Strasbourg, Toulouse; IRAM

- 80% are not radio astronomers...
- Proposals (44,000 hours requested in total)

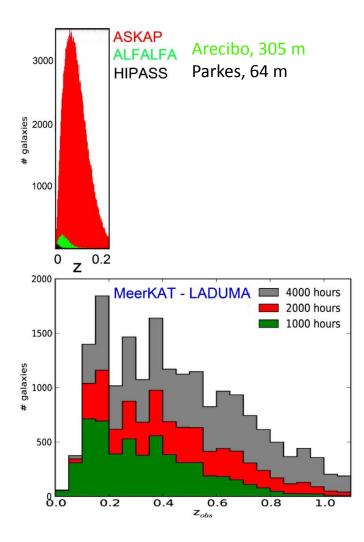
Virgo cluster HI (PI) Slow transients HI ultra-deep field Radio continuum Nearby Galaxies HI Stellar enveloppes Galaxy clusters Pulsars and fast transients

ASKAP Survey Science Proposals

Large Programmes, for first 5 years of operations FoV: 30 square degrees; nominal resolution 30", but down to 6" is possible.

EMU: deep continuum survey of 75% of entire sky 10 μJy rms, 10 million sources – typical SF galaxy to z~1

WALLABY: 21cm HI line survey of 75% of entire sky mJy rms, 500,000 galaxies, mean z~0.05

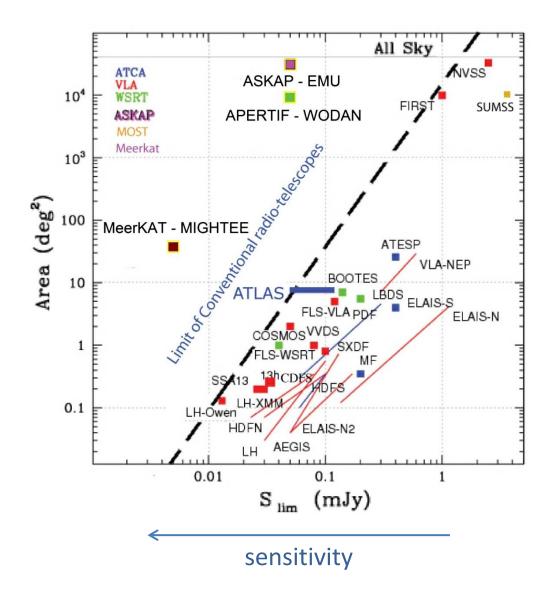

CRAFT DINGO	commensal fast transients (<5 sec)
FLASH	deep HI field HI absorption lines
GASKAP	galactic spectral lines
POSSUM	polarization and magnetism
VAST	variables and slow transients

COAST pulsar survey and timing High Resolutions Components + VLBI

MeerKAT Large Programmes

Large Programmes, for first 5 years of operations FoV 1 square deg., wide-band receivers, nominal resolution 8"

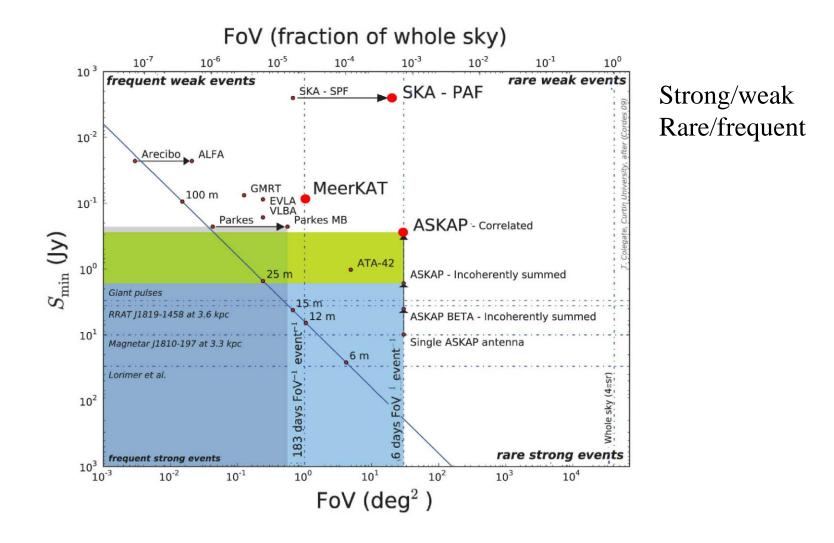
Pulsar timing LADUMA	ultra-deep HI field
Fornax cl. HI	deep HI in nearby cluster – cosmic web
MESMER	molecules in EoR
MALS	absorption lines
MeerGAL	galactic plane, high frequencies
MHONGOOSE	deep HI, nearby galaxies
MIGHTEE	deep extragalactic, continuum
TRAPUM	transients and pulsars
ThunderKAT	transients


ASKAP + APERTIF: all-sky, shallow

detection of a million galaxies imaging of thousands of galaxies: HI distributions and velocity fields

mean redshift ~0.05

MeerKAT: small field, ultra-deep detection of 20,000 galaxies, in 1 sq.deg


mean redshift ~0.3

ASKAP + APERTIF: all-sky, 50 μJy

MeerKAT:

40 sq.deg, 5 µJy

Using the SKA Precursors

Large Programmes for their first 5 years of operations were defined a few years ago

- Consortia are still open to new members
- Not all telescope time is for these Large Programmes,

```
there will be time (10% for ASKAP, 30% for MeerKAT?)
for smaller (<1000 hours each?)
PI-led programmes
```

Aux antennes, citoyens!

ULLE EUCOLF DE