Solar Physics and Space weather

A. Kerdraon Observatoire de Paris LESIA

Sun and Heliosphere: Why?

It is a very close star:

- Detailed studies on magnetic field generation, convection, coronal heating....
- Its a natural lab for collisionless plasmas physics
- Magnetic field instabilities: flares, CMEs etc.
- The sun is driving the interplanetary medium (solar wind)
- The sun magnetic activity, through particles, MHD disturbances, solar wind, and more, has a strong impact on the IM and planets (leading to a « space weather » research activity)

Observations with LOFAR

- Radio waves are emitted
 - by accelerated electrons
 - Various waves-particles instabilities
 - Gyromagnetic emission
 - Brehmstrahlung thermal emission of the hot corona
- The frequency is generally decreasing when the altitude increases
 - Lofar range correspond to 0.1 to 3 solar radii above the photosphere. This region makes the connexion between the magnetic activity (low corona, chromosphere) and the solar wind.
- What can we expect: better understanding of
 - Electrons acceleration in flares (together with higher frequencies) and propagation
 - MHD disturbances(Coronal mass ejections): generation and propagation
 - Shocks generation and propagation.
 - Large scale magnetic fields structuring the corona and the solar wind.
- Solar physics uses all EM spectrum from gamma rays to km wavelengths, and particles

Typical m – deca radio emission: non thermal electrons

Electrons beams type III bursts In the LOFAR frequency band

Type III, Type 2 (shocks), continuas during a flare Lofar frequency band, and above

Journées radio SKA-Lofar Paris, Flux: 10^4 to 10^8 jansky

Typical m – deca radio emission: thermal corona emission

Bright regions are located between photospheric inversion lines. Could be a support to recent Antochios works on coronal / solar wind magnetic fields.

Specific solar problems

- General: Solar activity forecast is difficult
- Imaging:
 - Snapshots:
 - The object is extended, multiscale, and variable.
 - Bursts are very different at different frequencies. Measure the accurate position at each frequency is a main goal.
 - Even the corona thermal emission changes a lot with the frequency
 - Self calibration cannot be used because it looses the absolute position: we try to calibrate on known radio sources, not to close, not to far from the sun.
 - The accuracy and the stability of this calibration has to be known (the calibrator may be unavailable during strong solar emissions)
 - The basic strategy is to compare with the Nançay radioheliograph (NRH) in the High frequency band of LOFAR, then to apply to the low frequency band.
 - Ionosphere corrections ??
 - Rotationnal synthesis: should not be a problem if we can make snapshots.

Spectroscopy

- Easier than imaging
 - Can have high spectral and time resolution
 - LOFAR limitation to one frequency band is severe.
- Again: ionosphere

Expect position shift > 1R @200 MHz

Nançay decametric array: 10-80 MHz spectrum of a flat continuum (January 5,2014)

Organisation:

Key Science Project Solar Physics and Space Weather with LOFAR PI Gottfried Mann, AIP, Potsdam

- ≈ 30 participants, 11 countries
- Annual workshops
- AIP makes:
 - A data center Isdc.aip.de
 - The image processing pipe line.

Status of imaging the pipe line

- Using external calibrators has been tested
 - Imaging a radio source calibrated by a second one.
 - Verifying that positions of radio burst at different frequencies are plausible (AIP, work in progress)
 - The instrument is unstable, calibration are valid for a few minutes only.
- The main problem is the scheduling process, its timescale is in weeks. Solar activity prevision is <1 day.

Imaging with a calibrator

LOFAR – NRH images of a T III burst 134 and 151 MHz.

Positions?

dio SKA-Lofar Paris,

Tied beam mode observation of solar bursts

Field 200' * 200' 126 beams, 15' @ 40MHz

Gives high resolution spectras in each beam.

Good complement to FT imaging (if both modes are available together)

Tied beam mode "images" 30-90 MHz spectras in beams 4 and 24

Morosan D. et al. to be published in A & A

11-13-02-2014

Tied beam mode "images"

Is it true, or ionosphere?

This is a storm activity, which has a stable position at higher frequencies / lower altitudes.

Other observations with LOFAR

IPS: Possible with LOFAR (Fallows R.A., Solar Phys. 2013)

Auto and cross Correlations for 2 days

Possible CME detection (left)

Figure 8. Left: Auto- and cross-correlation functions for an observation of 3C298 taken on 14 November 2011. Right: Same for an observation of 3C279 taken on 17 November 2011.

Many baselines, but there are already 4 dedicated telescopes in the world (India, Japan, Mexico, Korea) which can provide daily maps of the solar wind.

Faraday rotation in the solar wind?

Cycle 1 projects

- 4 proposals
 - 1 rejected (tied mode), 3 (22,25,44) merged with a common allocation of 8*6 hours.
 - An alert mechanism is desireable
 - Otherwise, chances to get no interesting emissions are high.
 - Referees mentionned a 24h notice...
 - A quiet sun obervation has its own scientific rationale, despite there was no such proposal.
 - We may add single station spectroscopy
 - The proposal need only the core of Lofar: some international stations may be available during the solar observations.
 - Combine with UTR2 low frequency (10 38 MHZ) spectras.

Other instruments: MWA

- Located in Australia
- Compact array
 - Many baselines: high dynamic imaging
 - 100 300 MHz
 - Possible drawbacks: speed, dynamic.
 - First call to proposals now.

MWA Performance Parameters

Frequency range	80-300 MHz
Number of receptors	2,048 dual polarization dipoles
Number of tiles	128
Collecting area	~2,000 m² (at 200 MHz)
Field of view	~15°-50° (1000 deg² at 200 MHz)
Configuration	Centrally condensed core array ~1.5 km dia. Outliers elements - out to a ~3 km dia.
Bandwidth	220 MHz (Sampled); 30.72 MHz (Processed)
# Spectral channels	768 (Processed)
Temporal resolution	0.5 s (Raw); 8 s (Processed)
Polarization	Full Stokes
Point source sensitivity	80mJy in 1 s (30.72 MHz, 200 MHz)
Number of baselines Journ	8,128 (VLA: 351, GMRT: 435, ATA: 861)

32T 152.3 MHz, 1s, 80 kHz, θ_0 =13.3′, log scale, DR ~1100, images are 1 s apart

