Fast Radio Transients Jason Hessels (ASTRON/Univ. of Amsterdam)

Will discuss

- Single-pulse searches
- Pulsar "giant" pulses
- The "Lorimer" Burst
- RRATs (rotating radio transients)
- Perytons
- FRBs (fast radio bursts)

Won't discuss

- (exo)Planets
- Flare stars
- Solar burts

Transient Parameter Space

 $(Wv)^2 \propto SD^2/T$

Large portions of phase space empty and unexplored!

Cordes et al. 2004

Transient Parameter Space

 $(Wv)^2 \propto SD^2/T$

Large portions of phase space empty and unexplored!

Cordes et al. 2004

Transient Parameter Space

Large FoV for rare, bright events

Large instantaneous sensitivity for weak source classes

Cordes et al. 2004

What are we missing?

These are observed a few times a week.
For radio fast transients, we're scratching the surface of 10,000 events per day.

Propagation Effects

Galactic Dispersion

Galaxy top-down

Along Galactic plane

 Contours of constant dispersion measure (NE2001 model; Cordes & Lazio)

Pulsar Searching

Pulsar Searching

Dispersion measure trial

The Lorimer et al. 2006, Science

Time

- DM > expected from Galaxy.
- No observed repeats.
- Hundreds per day per sky.

The Thornton Bursts

a.k.a. Fast Radio Bursts (FRBs) Thornton et al. 2013, Science

- FRB 110220.
- DM = 944 pc/cc
- z ~ 0.8?
- Shows expected dispersive delay and scatter-broadening.
 10,000 /sky/day?!

Terminology

RRATs (e.g. McLaughlin et al. 2006)

- Sporadically pulsing pulsars.
- DM implies Galactic distance.
- Repeating (in general).

Perytons (e.g. Burke-Spolaor et. al 2011)

• Appear to be near-field (terrestrial/ atmospheric).

- Narrow DM range ~350pc/cc.
- "Kinked" delay with time.
- "Patchy spectra".

Terminology

Giant Pulse (e.g. Hankins et al. 2004)

- Sporadic exceptionally bright pulsar pulses.
- Narrower than normal pulses.
- May come from different emission region.
- Crab and PSR B1937+21 are famous examples.

FRBs (e.g. Thornton et al. 2013)

- Term generally used when DM > maximum Galactic value.
- Follow dispersive delay.
- Non-repeating (we think!).
- Could be extra-Galactic.

Merging Black Holes

Supernovae Magnetars

Evaporating Black Holes

extra-Galactic

"Blitzars"

Gamma-ray Bursts

Galactic

SET

Flare stars

Pernicious RFI Atmospheric effects A well-coordinated hoax

We are here

Merging Black Holes

Supernovae Magnetars

Evaporating Black Holes

Where do these signals come from?

Super-giant

Pulses

"Blitzars"

Gamma-ray Bursts

Flare stars

SETI

Pulsars

Pernicious RFI Atmospheric effects A well-coordinated hoax

We are here

Merging Black Holes

Supernovae Magnetars

Evaporating Black Holes

Spoiler alert: We don't know.

Super-giant Pulses

Gamma-ray Bursts

"Blitzars"

Flare stars

SETI

Pulsars

Pernicious RFI Atmospheric effects A well-coordinated hoax

We are here

Why Interesting

If at least some FRBs are extragalactic:

- Origin in a cataclysmic event (study extreme physics).
- Complement to grav. wave events?
- Probe intergalactic medium. Missing baryon problem (McQuinn 2013; Deng & Zhang 2014). Also map intergalactic magnetic fields.
- Use as cosmic rulers. Measure dark energy equation-of-state parameter "w" at z>2 (Zhou et al. 2014).

Need an "FRB factory" capable of detecting and localizing 1000s of these.

How to make progress

• Real-time detection and signal buffering.

- Localization.
- Get polarimetry.
- Detect at other frequencies.
- Detect at other observatories.
- Characterize the "zoo" of fast radio signals (including RFI, different frequency sweeps etc.)
- SKAI has the potential to be the premier FRB factory

ARTEMIS

Real-time pulsar and transient searches

Karastergiou

DRAGNET

GPU Cluster

Raw data I - 72 stations

100 Fields-of-view Offline processing 10hr / week observing Sub-arraying

80x400 Fields-of-view

Realtime processing Observe 24/7 Localize events

PALFA FRB

Cordes & Chatterjee

Spitler, Cordes, Hessels, Lorimer, McLaughlin, Chatterjee,...

Detections (out of date)

Parkes (HTRU) has found ~12, one every 200hrs of observing

Detections (out of date)

Parkes (HTRU) has found ~12, one every 200hrs of observing

In Summary

- FRBs are a burgeoning class of transient signal with the potential for high-impact science.
- The field is still in its infancy, and there are many unknowns (rate, spectrum, origin(s)).
- Regardless, current (e.g. LOFAR) and upcoming (SKA) facilities can make a major impact on exploring the fast transient parameter space.