
Fundamental Physics with Pulsars

Lucas Guillemot 
!
!

Journées radio SKA-LOFAR 
!

Institut d’Astrophysique de Paris, 12/02/14



L. Guillemot, 12/02/14

Pulsars
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Pulsars are rapidly rotating highly 
magnetized neutron stars, born in 

supernova explosions of massive stars.	

!

Masses: 1.2 - 2 M⨀, Radii ~ 10 km.	


!
Magnetosphere extending to the “light 

cylinder”, where Ω x RLC = c.	

!

Emission (radio, optical, X-ray, gamma 
rays…) produced in beams around the star. 	


!
~2300 known today (mostly from radio 

observations)	

!

Pulsars are cosmic lighthouses!
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Science from long term timing of pulsars
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Earth and satellite motion around the SSB: 
α, δ 

Pulsar rotation and spin-down: 
f0, f1, … 

Binary motion? 
Pb, a, e, T0, … 
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Goal: account for every single rotation of 
the pulsar over a certain time interval.	


!
Pulse « Times of Arrival » (TOAs) are fit 

to a model accounting for the pulsar’s spin, 
motion, and binary orbit. 	


!
Superb precision for « millisecond » 

pulsars (MSPs)!	

!

Example: 15 years of EPTA observations of 
J1012+5307 yielded:	


P = 0.005255749014115410 ± 
0.000000000000000015 s	


(Lazaridis et al. 2009)	

!

⇒ Simple and clean experiment! 
MSP J1909-3744 observed at the Nançay Radio 

Telescope. Wrms < 100 ns!
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A large variety of applications

• Plasma physics and electrodynamics (e.g., eclipses, 
magnetospheres)	


• Astrophysics (stellar evolution, binary evolution)	

• Gravity tests in the strong field regime	

• Gravitational wave searches	

• Solid state physics (NS equations of state)	

• Magnetic field in the Galaxy and interstellar medium	

• Astrometry, planetary ephemerides	


!
Non-exhaustive list…	


!
Numerous applications in a wide range of 

astrophysics and fundamental physics!	
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Figure 4. Phase-averaged gamma-ray spectrum of PSR B1821−24 with the
off-peak source included in the model. The black line shows the best-fit model
from the likelihood fit over the full energy range; dashed lines show the 1σ
confidence region. The pulsar was assumed to have a power-law spectrum in
each energy band and required to be found with a TS of at least 9, or else a 95%
confidence-level upper limit was calculated.

range φ ∈ [0.36, 0.56], where the quoted ranges correspond to
the peak positions plus and minus twice the best-fit widths.

Romani & Johnston (2001) and Knight et al. (2006) reported
that the first X-ray peak was consistent with the phase at which
giant pulses were observed in the radio (∼0.02 in phase after the
first radio peak). While the phases of the first X-ray and gamma-
ray peaks are not consistent with 0.02 within uncertainties, we
note that 0.02 is only an estimate and thus confirm that the first
X-ray peak and now the first gamma-ray peak are consistent with
the phase of giant pulses. Knight et al. (2006) also observed a
single giant pulse occurring 0.55 in phase after the bulk of the
giant pulses, which they contend represents a second population
of giant pulses from PSR B1821−24 based on the fact that this
pulse had 21 times the mean pulse energy and that Romani
& Johnston (2001) detected pulses at a similar phase. With
our phase convention, this corresponds to phase 0.57, which is
consistent with the phase of the second X-ray peak.

Given the very large spin-down luminosity of PSR
B1821−24, Venter (2008) proposed this MSP as a potential very
high energy target for H.E.S.S. (see also Frackowiak & Rudak
2005). The expected spectrum was very geometry dependent,
but some flux above 100 GeV would have been expected in
a screened polar cap model for an optimistic geometry. The
measured EC and the gamma-ray light-curve shape presented in
Figure 5 disfavor this model for PSR B1821−24.

5. DISCUSSION

5.1. Multi-wavelength Light Curves

The relative phasing of the multi-wavelength light-curve
components in Figure 5 presents a challenge to pulsar emission
models. Our preliminary attempts to explain the gamma-ray and
radio light curves of PSR B1821−24 using geometric models
yielded the following general conclusions.

It is extremely difficult, if at all possible, to obtain three radio
peaks of the correct shape and position in phase by invoking
only a single radio cone per magnetic pole (e.g., Story et al.
2007). If instead one attempts to model the first and third
radio peaks as originating from opposite magnetic poles, an
interpretation supported by the 0.35 GHz profile, the chosen
value of the observer angle (ζ ) must be within ∼4◦ of 90◦

Figure 5. Folded light curves of PSR B1821−24, from top to bottom:
!100 MeV, 3–16 keV, and 1.4 GHz. The light curves are shown over two
rotations for clarity; the solid (blue in the online version) lines over the second
rotation in the top two panels are the best-fit light-curve shapes. The dashed (red
in the online version) vertical line indicates the approximate phase from which
giant pulses have been observed. The dot-dashed (green in the online version)
vertical line indicates the center of P3 in the radio profiles.
(A color version of this figure is available in the online journal.)

with a magnetic inclination angle (χ ) between 40◦ (required so
that both P1 and P3 would be visible) and 60◦ (to provide the
correct radio peak multiplicity). This geometry results in the
correct radio phase separation but cannot produce the correct
gamma-ray peak positions (and shapes in some cases) when
using standard, geometric realizations of outer-magnetospheric
emission models (e.g., Cheng et al. 1986; Dyks & Rudak 2003).
Stated in a different way, one may find reasonable gamma-ray
profile fits (e.g., at χ= 40◦ and ζ = 85◦, although the peak
separation is somewhat small and we have to choose a different
fiducial phase), but then the radio peak multiplicity and/or peak
positions are not correct. There is therefore a tension between
the gamma-ray and radio profiles in terms of the most preferred
fit.

It is also possible to model the first two radio peaks using
a radio cone above a single pole. This interpretation would
be consistent with polarization measurements indicating high
linear and low circular polarization, as well as a nearly constant
position angle in these peaks (indicative of non-caustic, conal
emission; Backer & Sallmen 1997; Stairs et al. 1999). The
third peak may arise from the opposite pole. However, this
is problematic when using the standard prescription for radio
emission height (e.g., Kijak & Gil 2003; Story et al. 2007). The
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Figure 2. Timing residuals as a function of time for the model given in Table 1
(upper panel), and after whitening of the residuals using eight harmonically
related sinusoids (lower panel). The arrow (red in the online version) indicates
the epoch of the glitch of PSR B1821−24, vertical lines (green in the online
version) denote the epochs of the X-ray observations considered in this article,
and the dashed horizontal line (blue in the online version) shows the Fermi LAT
observation interval described in Section 3.3.
(A color version of this figure is available in the online journal.)

of PSR B1821−24. The latest proper-motion measurement
for M28 (Casetti-Dinescu et al. 2013) agrees well with our
values, with a total difference of 21 km s−1 at a distance
of 5.1 kpc. This difference is less than the estimated escape
velocity of 63.8 km s−1 (Gnedin et al. 2002), suggesting that
PSR B1821−24 is, in fact, bound to the cluster.

3.2. X-ray Data

The RXTE observations we report on here were performed
by the Proportional Counter Array (PCA, which consists
of five individual proportional counter units, PCUs) from
1996 September 16 (MJD 50,342.261) to 2007 April 26
(MJD 54,216.252), accumulating a total integration time of
∼469 ks. These observations employed anywhere from one to
five PCUs in various combinations during each observation with
data recorded using GoodXenon or GoodXenonwithPropane
mode. The PCA data were analyzed using the HEASoft version
6.12 data analysis suite. We employed a variety of bit masks25

to select events from the PCUs in the 3–16 keV range that were
on during each individual observation. In addition, Ray et al.
(2008) reported that including events from the first and second
anode layer improved the signal-to-noise ratio of the pulsed
detection, and we followed that prescription here. We did not
apply a background correction.

The PCA is not an imaging instrument. Rather, it has a field
of view approximately represented by a Gaussian with FWHM
of 14′ (Jahoda et al. 2006). This means that other X-ray sources
known to be in M28 and that have significant flux above 3 keV
(e.g., Becker et al. 2003) will contribute to the total count rate
in each observation. Because the contribution from these addi-
tional sources will add incoherently to the pulsed signal from
PSR B1821−24 and we cannot know which events are from PSR
B1821−24, we do not attempt to account for these additional

25 http://heasarc.nasa.gov/docs/xte/recipes/cook_book.html

X-ray sources in our analysis or to estimate a resulting back-
ground level for the pulsed analysis in Section 4.2.

The events that satisfy our selection criteria were barycen-
tered with the faxbary tool using the DE405 solar system
ephemeris and including the RXTE fine clock corrections, yield-
ing an individual event timing accuracy of ∼6 µs (Rots et al.
1998; Jahoda et al. 2006). The proper motion of the pulsar was
incorporated into the position used to barycenter the data at
each epoch. Pulse phases were calculated utilizing the Photon
Events plugin26 for Tempo2 and the radio ephemeris described
in Section 3.1.

3.3. LAT DATA: P7REP

Pass 7 LAT data have been reprocessed27 using updated
calibration constants for the detector subsystems, most im-
portantly for the calorimeter (CAL) to more accurately de-
scribe the position-dependent response of each scintillator crys-
tal and the slight decrease in scintillation light yield with time
(∼1% yr−1) from radiation exposure on orbit.

This reprocessing affected the LAT data (P7REP, hereafter)
in several ways. First, the point-spread function (PSF) is
significantly improved above a few GeV, with a reduction in the
68% containment radius of 30% (40%) for events converting
in the front (back) of the tracker (Bregeon et al. 2013). At
these energies, the improved calibration constants result in
more accurately calculated centroids of energy deposition in
the CAL to constrain the incident event direction. Second, the
significance of detection and precision of measured photon
flux is increased slightly for most sources—more strongly for
sources with hard spectra than for those with cutoffs at a few
GeV, like pulsars. Third, spectral features such as cutoff energies
are shifted upward slightly in energy (∼few %) by the change
in energy scale.

We selected events from the P7REP data corresponding to the
SOURCE class recorded between 2008 August 4 and 2012 March
31 with reconstructed directions within 11.◦5 of the pulsar radio
position, allowing us to construct a 16◦ × 16◦ square region
with no blank corners for a binned likelihood analysis (see
Section 4.1); energies from 0.1 to 100 GeV, the lower limit
that is recommended for analysis of P7REP data and the upper
limit that adequately covers the range of known pulsar cutoff
energies; and zenith angles !100◦, to reduce contamination of
gamma rays from the limb of the Earth. Good time intervals
were then selected corresponding to when the instrument was
in nominal science operations mode, the rocking angle of the
spacecraft did not exceed 52◦, the limb of the Earth did not
infringe upon the region of interest, and the data were flagged
as good. All LAT analyses were performed using the Fermi
Science Tools v9r27p1.

The recommended instrument response functions (IRFs,
which include the PSF, effective area, and energy dispersion) for
analyzing P7REP data are P7REP_V15. These IRFs are derived
from detailed simulations of the instrument (Ackermann et al.
2012) with some modifications based on on-orbit performance
checks, which are detailed below.

The accuracy with which incoming event directions are
reconstructed is dependent on the energy (E), interaction point

26 Written by Anne Archibald, http://www.physics.mcgill.ca/∼aarchiba/
photons_plug.html.
27 For more information about the updated calibrations and P7REP data, see
Bregeon et al. (2013) and http://fermi.gsfc.nasa.gov/ssc/data/analysis/
documentation/Pass7REP_usage.html.
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Radio, X-ray, and gamma-ray observations of 
B1821-24A (Johnson et al. ApJ 2013)

Nançay timing
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The « double pulsar » J0737-3039

J0737-3039: only known double pulsar system 
with both pulsars detected in radio.	


PA ~ 22.7 ms, PB ~ 2.77 s.	

Orbital period Porb ~ 147 min	


Orbital size ~ 2.93 lt-s	

!

6 post-Keplerian parameters measured! 	

Most precise tests of GR in the strong field 

regime: ~ 0.05%.	

!

System seen edge-on (i ~ 89°) + massive 
companion (pulsar B): strong Shapiro delay 
signature in the radio timing of pulsar A. 	

⇒ very accurate mass measurements: 	


mA = 1.3381(7) M⨀, mB = 1.2489(7) M⨀.

!5

the semimajor axis of B’s orbit and i is the
orbital inclination angle—we also adopted A’s
Keplerian parameters (with 180- added to wA)
and kept these fixed. We also adopted the PK
parameter ẇ (the rate of periastron advance)
from the A fit because logically this must be
identical for the two pulsars; this equality
therefore does not implicitly make assumptions
about the validity of any particular theory of
gravity (see below). The same applies for the
orbital decay parameter Ṗb. In contrast, the PK
parameters g (the gravitational redshift and time
dilation parameter) and s and r (the Shapiro-
delay parameters) are asymmetric in the masses,
and their values and interpretations differ for A
and B. In practical terms, the relatively low
timing precision for B does not require the
inclusion of g, s, r, or Ṗb in the timing model.
We can, however, independently measure ẇwB,
obtaining a value of 16.96- T 0.05- yearj1,

consistent with the more accurately determined
value for A.

Because the overall precision of our tests of
GR is currently limited by our ability to measure
xB and hence the mass ratio R K mA/mB 0 xB/xA
(see below), we adopted the following strategy to
obtain the best possible accuracy for this param-
eter. We used the whole TOA data set for B in
order to measure B’s spin parameters P and Ṗ,
given in Table 1. These parameters were then kept
fixed for a separate analysis of the concentrated
5-day GBT observing sessions at 820 MHz. On
the time scale of the long-term profile evolution
of B, each 5-day session represents a single-
epoch experiment and hence requires only a
single set of profile templates. The value of xB
obtained from a fit of this parameter only to
the two 5-day sessions is presented in Table 1.

Because of the possible presence of unmod-
eled intrinsic pulsar timing noise and because

not all TOA uncertainties are well understood,
we adopt the common and conservative pulsar-
timing practice of reporting twice the parameter
uncertainties given by tempo as estimates of
the 1s uncertainties. Although we believe that
our real measurement uncertainties are actu-
ally somewhat smaller than quoted, this prac-
tice facilitates comparison with previous tests
of GR by pulsar observation. The timing model
also includes timing offsets between the data
sets for the different instruments represented by
the entries in table S1. The final weighted root
mean square post-fit residual is 54.2 ms. In
addition to the spin and astrometric parameters,
the Keplerian parameters of A’s orbit, and five
PK parameters, we also quote a tentative de-
tection of a timing annual parallax that is con-
sistent with the dispersion-derived distance.
Further details are given in (16).

Tests of general relativity. Previous obser-
vations of PSR J0737-3039A/B (8, 9) resulted
in the measurement of R and four PK param-
eters: ẇ , g, r, and s. Relative to these earlier
results, the measurement precision for these
parameters from PSR J0737-3039A/B has in-
creased by up to two orders of magnitude. Also,
we have now measured the orbital decay Ṗb. Its
value, measured at the 1.4% level after only 2.5
years of timing, corresponds to a shrinkage of
the pulsars’ separation at a rate of 7 mm per day.
Therefore, we have measured five PK parame-
ters for the system in total. Together with the
mass ratio R, we have six different relationships
that connect the two unknown masses for A and
B with the observations. Solving for the two
masses using R and one PK parameter, we can
then use each further PK parameter to compare
its observed value with that predicted by GR for
the given two masses, providing four indepen-
dent tests of GR. Equivalently, one can display
these tests elegantly in a ‘‘mass-mass’’ diagram
(Fig. 1). Measurement of the PK parameters
gives curves on this diagram that are, in general,
different for different theories of gravity but
should intersect in a single point (i.e., at a pair
of mass values) if the theory is valid (12).

As shown in Fig. 1, we find that all mea-
sured constraints are consistent with GR. The
most precisely measured PK parameter current-
ly available is the precession of the longitude of
periastron, ẇ . We can combine this with the
theory-independent mass ratio R to derive the
masses given by the intersection region of their
curves: mA 0 1.3381 T 0.0007 MR and mB 0
1.2489 T 0.0007 MR , where MR is the mass of
the Sun (20). Table 2 lists the resulting four
independent tests that are currently available.
All of them rely on comparison of our mea-
sured values of s, r, g, and Ṗb with predicted
values based on the masses defined by the
intersection of the allowed regions for ẇw and R
in the mA-mB plane. The calculation of the pre-
dicted values is somewhat complicated by the
fact that the orbit is nearly edge-on to the line
of sight, so that the formal intersection region

Fig. 1. Graphical summary of tests of GR parameters. Constraints on the masses of the two stars (A and
B) in the PSR J0737-3039A/B binary system are shown; the inset is an expanded view of the region of
principal interest. Shaded regions are forbidden by the individual mass functions of A and B because sin
i must be e1. Other constraining parameters are shown as pairs of lines, where the separation of the
lines indicates the measurement uncertainty. For the diagonal pair of lines labeled as R, representing
the mass ratio derived from the measured semimajor axes of the A and B orbits, the measurement
precision is so good that the line separation becomes apparent only in the inset. The other constraints
shown are based on the measured PK parameters interpreted within the framework of general relativity.
The PK parameter ẇw describes the relativistic precession of the orbit, g combines gravitational redshift
and time dilation, and ṖPb represents the measured decrease in orbital period due to the emission of
gravitational waves. The two PK parameters s and r reflect the observed Shapiro delay, describing a
delay that is added to the pulse arrival times when propagating through the curved space-time near the
companion. The intersection of all line pairs is consistent with a single point that corresponds to the
masses of A and B. The current uncertainties in the observed parameters determine the size of this
intersection area, which is marked in blue and reflects the achieved precision of this test of GR and the
mass determination for A and B.

RESEARCH ARTICLES

www.sciencemag.org SCIENCE VOL 314 6 OCTOBER 2006 99

 o
n 

Ap
ril

 2
3,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Kramer et al., Science 2006

actually includes parts of the plane disallowed
by the Keplerian mass functions of both pulsars
(see Fig. 1). To derive legitimate predictions for
the various parameters, we used the following
Monte Carlo method. A pair of trial values for
ẇ and xB (and hence R and the B mass func-
tion) is selected from Gaussian distributions
based on the measured central values and un-
certainties. (The uncertainty on xA is very small
and is neglected in this procedure.) This pair of
trial values is used to derive trial masses mA

and mB, using the GR equation ẇ 0 3(Pb/2p)j5/3

(TRM)
2/3 (1j e2)j1, where e is the orbital eccen-

tricity and M 0 mA þ mB and TR K GMR/c
3 0

4.925490947 ms, and the mass-ratio equation
mA/mB 0 xB/xA. If this trial mass pair falls in

either of the two disallowed regions (based on
the trial mass function for B), it is discarded.
This procedure allows for the substantial uncer-
tainty in the B mass function. Allowed mass
pairs are then used to compute the other PK
parameters, assuming GR. This procedure is
repeated until large numbers of successful trials
have accumulated. Histograms of the PK pre-
dictions are used to compute the expectation
value and 68% confidence ranges for each of
the parameters. These are the values given in
Table 2.

The Shapiro delay shape illustrated in Fig. 2
gives the most precise test, with sobserved/spredicted 0
0.99987 T 0.00050 (21). This is by far the best
available test of GR in the strong-field limit,

having a higher precision than the test based on
the observed orbit decay in the PSR B1913þ16
system with a 30-year data span (22). As for the
PSR B1534þ12 system (6), the PSR J0737-
3039A/B Shapiro-delay test is complementary
to that of B1913þ16 because it is not based on
predictions relating to emission of gravitational
radiation from the system (23). Most important,
the four tests of GR presented here are qual-
itatively different from all previous tests be-
cause they include one constraint (R) that is
independent of the assumed theory of gravity at
the 1PN order. As a result, for any theory of
gravity, the intersection point is expected to lie
on the mass ratio line in Fig. 1. GR also passes
this additional constraint.

In estimating the final uncertainty of xB and
hence of R, we have considered that geodetic
precession will lead to changes to the system
geometry and hence changes to the aberration of
the rotating pulsar beam. The effects of aber-
ration on pulsar timing are usually not separately
measurable but are absorbed into a redefinition
of the Keplerian parameters. As a result, the ob-
served projected sizes of the semimajor axes,
xobsA,B, differ from the intrinsic sizes, xintA,B, by
a factor (1 þ eA

A,B). The quantity eA depends
for each pulsar A and B on the orbital period, the
spin frequency, the orientation of the pulsar spin,
and the system geometry (12). Although aberra-
tion should eventually become detectable in the
timing, allowing the determination of a further
PK parameter, at present it leads to an undeter-
mined deviation of xobs from xint, where the latter
is the relevant quantity for the mass ratio. The
parameter eAA,B scales with pulse period and is
therefore expected to be two orders of magnitude
smaller for A than for B. However, because of
the high precision of the A timing parameters,
the derived value xobsA may already be signifi-
cantly affected by aberration. This has (as yet) no
consequences for the mass ratio R 0 xobsB/x

obs
A,

as the uncertainty in R is dominated by the much
less precise xobsB. We can explore the likely
aberration corrections to xobsB for various pos-
sible geometries. Using a range of values given
by studies of the double pulsar’s emission
properties (24), we estimate eAA È 10j6 and
eAB È 10j4. The contribution of aberration
therefore is at least one order of magnitude
smaller than our current timing precision. In the
future this effect may become important, pos-
sibly limiting the usefulness of R for tests of
GR. If the geometry cannot be independently
determined, we could use the observed devia-
tions of R from the value expected within GR
to determine eAB and hence the geometry of B.

Space motion and inclination of the orbit.
Because the measured uncertainty in Ṗb de-
creases approximately as Tj2.5, where T is the
data span, we expect to improve our test of the
radiative aspect of the system to the 0.1% level
or better in about 5 years’ time. For the PSR
B1913þ16 and PSR B1534þ12 systems, the
precision of the GR test based on the orbit-

Table 2. Four independent tests of GR provided by the double pulsar. Observed PK parameters
were obtained by fitting a DDS timing model to the data. Values expected from GR take into
account the masses determined from the intersection point of the mass ratio R and the periastron
advance ẇw. Uncertainties refer to the last significant digits and were determined using Monte Carlo
methods.

PK parameter Observed value Expected value from GR
Ratio of observed
to expected value

ṖPb 1.252(17) 1.24787(13) 1.003(14)
g (ms) 0.3856(26) 0.38418(22) 1.0036(68)
s 0.99974(j39,þ16) 0.99987(j48,þ13) 0.99987(50)
r (ms) 6.21(33) 6.153(26) 1.009(55)
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Fig. 2. Measurement of a Shapiro delay demonstrating the curvature of space-time. Timing residuals
(differences between observed and predicted pulse arrival times) are plotted as a function of orbital
longitude and illustrate the Shapiro delay for PSR J0737-3039A. (A) Observed timing residuals after a
fit of all model parameters given in Table 1 except the Shapiro-delay terms r and s, which were set to
zero and are not included in the fit. Although a portion of the delay is absorbed in an adjustment of the
Keplerian parameters, a strong peak at 90- orbital longitude remains clearly visible. This is the orbital
phase of A’s superior conjunction (i.e., when it is positioned behind B as viewed from Earth), so that its
pulses experience a delay when moving through the curved space-time near B. The clear detection of
structure in the residuals over the whole orbit confirms the detection of the Shapiro delay, which is
isolated in (B) by holding all parameters to their best-fit values given in Table 1, except the Shapiro
delay terms (which were set to zero). The red line shows the predicted delay at the center of the data
span. In both cases, residuals were averaged in 1- bins of longitude.
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Shapiro delay signature
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A pulsar in a stellar triple system

See Ransom et al., Nature 2014.	


!
J0337+1715: 2.73 ms pulsar discovered at 
the Green Bank Telescope (USA). Timing 

at GBT, Arecibo and WSRT (Netherlands).	


!
Only known MSP in a stellar triple system!	


!
Strong gravitational interactions are 
observed. Masses and inclinations 

measured with great accuracy. 	


!
Ideal laboratory to test the strong 

equivalence principle of General Relativity!	


!
(are the two inner stars falling in the field 

of the outer star in the same way?)

!6

expected values and error estimates directly from the parameter pos-
terior distributions. We plot the results in Fig. 1 and list best-fit para-
meters and several derived quantities in Table 1. Component masses
and relative inclinations are determined at the 0.1%–0.01% level,
which is one to two orders of magnitude more precisely than from
other MSP timing experiments, by a method that is effectively inde-
pendent of the gravitational theory used. A detailed description of the
three-body model and fitting procedure is under way (A.M.A. et al.,
manuscript in preparation).

Using an early radio position, we identified an object with unusually
blue colours in the Sloan Digital Sky Survey16 (SDSS; Fig. 3). The optical
and archival ultraviolet photometry, combined with new near- and mid-
infrared photometry, are consistent (Methods) with a single white dwarf
of temperature ,15,000 K, which optical spectroscopy confirmed is the
inner white dwarf in the system (D.L.K. et al., manuscript in prepara-
tion). When combined with the known white dwarf mass from timing
observations, white dwarf models provide a radius from which we infer
a photometric distance to the system of 1,300 6 80 pc. The photometry
and timing masses also exclude the possibility that the outer companion
is a main-sequence star.

The pulsar in this system seems to be a typical radio MSP, but it is
unique in having two white dwarf companions in hierarchical orbits.
Although more than 300 MSPs are known in the Galaxy and in globu-
lar clusters, J033711715 is the first MSP stellar triple system found.
Because there are no significant observational selection effects discrim-
inating against the discovery of pulsar triple (as opposed to binary)
systems, this implies that=1% of the MSP population resides in stellar
triples and that =100 such systems exist in the Galaxy.

Predictions for the population of MSP stellar triples have suggested
that most have highly eccentric outer orbits owing to dynamical inter-
actions between the stars during stellar evolution17. Such models could
also produce eccentric binaries such as MSP J190310327 (ref. 18), if
the inner white dwarf, which had previously recycled the pulsar (that is,
turned it into an MSP through the transfer of matter and angular
momentum), were destroyed or ejected from the system dynamically19.
In such situations, however, the coplanarity and circularity of the orbits
of J033711715 would be very surprising. Those orbital characteristics,
and their highly hierarchical nature (Pb,O/Pb,I < 200, where Pb,O and
Pb,I are the orbital periods for the outer and inner binaries, respect-
ively), imply that the current configuration is stable on long time-
scales20, greatly increasing the odds of observing a triple system such
as J033711715. Secular changes to the various orbital parameters will
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a, Orbital shape and velocity of the outer white dwarf (red), and the orbital
shape and velocity of the centre of mass of the inner binary (grey). b, Orbital
shapes and velocities of the inner white dwarf (orange) and the pulsar (blue).
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the basically coplanar orbits with respect to the Earth–pulsar direction.
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A cosmic-scale GW detector

In a « Pulsar Timing Array » (PTA), pulsars 
act as the arms of a cosmic GW detector.	


!
Sources: supermassive black hole binaries, 

cosmic strings, stochastic background. 	

!

Current efforts: EPTA (Europe), PPTA 
(Australia), NANOGrav (North Am.), 

IPTA (International).	

!

Need 5 to 10 years of timing of 20 
pulsars with <100 ns accuracy. 	


!
Current best limits:	


• van Haasteren et al. 2011 (EPTA)	

• Shannon et al. 2013 (PPTA)	

• Demorest et al. 2013 (NANOGrav)	


Very similar and close to expected 
detection limit!

!7

  

Pulsar Timing Array GW complementarity:

For PTAs, sensitivity h ~ dt / T --> requires 10s of ns over years!

Gravitational Wave Detection with a Pulsar

Timing Array
● Need good MSPs

● Significance scales 
directly with the number 
of MSPs being timed.  
Lack of good MSPs is 
currently the biggest 
limitation

● Must time the pulsars for 
5-10 years at a precision 
of ~100 nano-seconds!

N. America Australia Europe
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Sensitivity of PTAs

Detection significance of an isotropic stochastic GW background as a 
function of signal strength.	


Need many more « good » MSPs and long time spans!

!8

The International Pulsar Timing Array 3

span of the ToA measurements. Figure 1 illustrates this for the case of detection of an

isotropic stochastic GW background with a set of idealised PTAs. While real PTAs may

not reach these ideal assumptions, the general trends remain valid. Clearly the most

dramatic improvement in detection significance is obtained by increasing the number of

pulsars in the PTA, with sensitivity approximately linearly proportional to the number

of pulsars in the array at a given GW amplitude. This is the core rationale for creation
of the International Pulsar Timing Array (IPTA).

Figure 1. Significance of detecting an isotropic stochastic GW background using a
PTA as a function of signal strength, number of pulsars in the PTA, and data spans.
Black lines are for 20 pulsars, red lines 50 pulsars and blue lines 200 pulsars. Data
spans are 5 years (plain lines), 10 years (crosses) and 20 years (circles). Rms timining
residuals of 100 ns and weekly sampling are assumed. (Manchester et al. 2013, Verbiest
et al. 2009)

There are three main PTAs currently operating: the European Pulsar Timing Array

(EPTA), the North American pulsar timing array (NANOGrav) and the Parkes Pulsar
Timing Array (PPTA) – see articles in this Focus issue by Michael Kramer & David

Champion, Maura McLaughlin and George Hobbs, respectively. Each of these has

been operating consistently since 2005 although earlier data from related pulsar timing

programs are frequently included in analyses. As is discussed in more detail in §3 below,

data are available for 39 pulsars, of which 11 are observed by two PTAs and eight by

all three PTAs.
The benefits of combining data sets from the various PTAs have long been

recognised. However, the first concrete steps toward setting up a framework to facilitate

this were taken by Andrea Lommen and colleagues when they organised the first IPTA

From 
Manchester et 

al. 2013.
Black lines: 20 pulsars, 

red: 50, blue: 200. 	


!
Plain lines: 5 years of 

timing, crosses: 10 years, 
20 years: circles. 	


!
Assumed weekly 

observations and 100 ns 
accuracy. 



L. Guillemot, 12/02/14

Constraints on NS equations of state

Pulsar timing measurements: 
mass constraints! 	


!
Can rule out (or severely 

constrain) NS equations of 
state.	

!

Highest known today: 
J0348+0432, 2.01 +/- 0.04 M⨀ 

(Antoniadis et al. 2013)	

!

Continued timing of 
J0737-3039A might also allow a 

direct measurement of its 
moment of inertia (spin-orbit 

coupling)

!9

Non-rotating mass vs physical radius for different equations of 
state.	


J1614-2230: Demorest et al. 2010 (1.97 +/- 0.04 M⨀)	


J0348+0432: Antoniadis et al. 2013 (2.01 +/- 0.04 M⨀)	


Other constraints: see Lattimer & Prakash 2007, in particular 
« rotation » = J1748-2446ad (716 Hz), Hessels et al. 2006

J0348+0432
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Pulsar searches with the SKA

See e.g. Cordes et al. 2004, Kramer et al. 2004, 
Smits et al. 2009.	


!
Expect:	


• 14000 « normal pulsars »	

• 6000 MSPs	

• hundreds of highly relativistic binary systems	

• pulsar orbiting the Galactic center?	

• extragalactic pulsars?	


!
Many more rare and interesting systems! (i.e.: 

pulsar orbiting a black hole?)	

!

Also, follow-up timing studies greatly enhanced: 	

!

!10

�TOA ⇠ wTsys

SPSRA
p
BT

Credit: MPIfR, Kramer	
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Characterizing the central black hole

See Liu et al. 2012.	

!

SKA timing of a pulsar orbiting Sgr A*: detailed 
investigation of the space-time around it. 	


!
Mass measurement for Sgr A* with <0.01% 

precision.	

!

Spin with <0.1% precision: cosmic censorship.	

!
!

Quadrupole moment with 1% precision: no-hair 
theorem.	


!
!

Top: residuals from quadrupole moment vs orbital phase.	


Bottom: Fractional precision for the mass determination of Sgr 
A* from three different effects (e = 0.5, i = 60°, 5 years of timing 

with 100 µs unc)

!11
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contains two separately measurable PK parameters, the mass
of the black hole MBH and sin i. The signal is usually only
sufficiently strong for edge-on systems (e.g., Kramer et al.
2006), but in our case even for a face-on orbit (i = 0) the
effect will be significant due to the large mass of Sgr A*, if the
orbit is eccentric. Using the equation of Blandford & Teukolsky
(1976)

∆S ≃ 2GMBH

c3
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

≃ (39.4 s)
(

MBH

4 × 106 M⊙

)
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

(7)

as a first-order estimation, one can see that for an eccentricity
of 0.5 the Shapiro delay for i = 0 amounts to about 40 s. This
already indicates that the Shapiro delay allows a precise mass
determination, even for a pulsar with poor timing precision.
Apart from containing MBH directly, the Shapiro delay gives a
second, though indirect, access to the Sgr A* mass via sin i and
the mass function. One finds

GMBH ≃
( cx

sin i

)3
(

2π

Pb

)2

, (8)

where x is the projected semimajor axis of the pulsar orbit (in
light seconds), which is an observable Keplerian parameter. It
depends on the orbital eccentricity and inclination, of which the
latter is more constraining.

In addition, there are significant contributions to the signal
propagation caused by frame dragging. A first-order analytic
equation for this effect can be found in Wex & Kopeikin (1999).
From this it is clear that the frame dragging can have a significant
contribution to the propagation delay, but in most cases will have
a distinct signature that can be fitted for, leading at the same
time to a precise mass measurement and a lower limit on the
spin parameter χ . Contributions from higher-order multipole
moments and light bending effects can easily be accounted for
in an analytic way (see, e.g., Kopeikin 1997).

The inclination of the pulsar orbit with respect to the line-of-
sight i (modulo a π − i ambiguity; see Figure 4) can be obtained
either directly from the Shapiro delay, as explained above, or
via Equation (8) by using the mass, MBH, derived from any
other PK parameter. Therefore, in Sections 4 and 5 where the
determination of spin and quadrupole is presented, we can treat
the inclination angle as a parameter that is known with sufficient
precision. A brief discussion on the π−i ambiguity can be found
in Section 4.1.

3.2. Simulations

The simulations performed in this paper mainly contain two
steps: creating TOAs and determining parameters together with
their measurement uncertainties. First, the TOAs are created
regularly with regard to solar system barycentric time and then
combined with the three time delays (Roemer, Einstein, and
Shapiro; see the above subsection) to account for the changes
in the signal arrival time due to the orbital motion of the
pulsar around Sgr A*. Next the simulated TOAs are passed
to the TEMPO software package. Based on a timing model,
TEMPO performs a least-squares fit to yield a phase-connected
solution of the TOAs and determines the model parameters. The
measurement uncertainties of these parameters are calculated
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Figure 3. Simulated fractional precision for the mass determination of Sgr A*
as a function of the orbital period Pb obtained from three different relativistic
effects: precession of the orbit (ω̇), Einstein delay (γE), and Shapiro delay (∆S).
The mass determinations are based on simulated data, assuming weekly TOAs
with an uncertainty of 100 µs over a time span of five years. We used an orbital
eccentricity e of 0.5 and an orbital inclination i, relevant for the Shapiro delay,
of 60◦. The simulations were done for a non-rotating black hole. Note that for
various practical reasons (such as the uncertainty in the pulsar mass), a precision
below 10−7 seems unrealistic. Also, as explained in the text, for a rotating black
hole ω̇ cannot be used directly for a high-precision mass determination due to
the large contribution of frame dragging.
(A color version of this figure is available in the online journal.)

via a covariance matrix. This is the standard procedure for
pulsar timing observations and is explained in great detail in
Taylor (1994), Lorimer & Kramer (2005), Hobbs et al. (2006),
and Edwards et al. (2006). Most of the timing models used in this
paper are part of the TEMPO standard implementation available
as a download from the sources given in these references.
Whenever we use an extension to these well-tested models, to
account for specific effects which are not covered by the standard
software, we will mention this explicitly in the corresponding
section.

In this subsection, we present the simulations for the mass
determination. For this we assumed five years of observations
with weekly TOAs which contain white Gaussian noise with a
standard deviation of 100 µs. Figure 3 shows the results of our
simulations for a typical system configuration. If this is not the
case then, as outlined above, ω̇ cannot a priori be used for a high-
precision mass measurement due to an unknown contribution
from the frame dragging, as we will show later.

In practice, not just one single relativistic effect will be
used to determine the mass of Sgr A*, but a consistent model,
accounting simultaneously for frame dragging effects in the
orbital motion and the signal propagation, will be used to
determine the mass and spin at the best level. How the spin
of Sgr A* affects the timing observations and how it can be
extracted from the timing data are the subject of the next section.

4. FRAME DRAGGING, SPIN MEASUREMENT, AND
GR’s COSMIC CENSORSHIP CONJECTURE

Although there is clear indication that Sgr A* rotates, its
actual rate of rotation is still not well determined. Investiga-
tions of flares from accreting gas in the near-infrared and in
X-rays yield a range of χ ≈ 0.22 to 0.99 (Genzel et al. 2003;
Aschenbach et al. 2004; Bélanger et al. 2006; Aschenbach
2010). The rather large range in the estimates of χ is also a
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Figure 9. Residuals caused by the quadrupole moment of Sgr A* plotted for
two orbital phases. We have used the same orbital and black hole parameters as
in Figure 5.
(A color version of this figure is available in the online journal.)

in this section, these periodic features of the quadrupole can be
used to fit for the quadrupole moment of Sgr A*.

5.1. Extracting the Quadrupole from the Timing Data

The deviations in the motion of the pulsar caused by the
quadrupole moment lead to a variation in the Roemer delay,
which we describe by a change in the coordinate position of the
pulsar according to

r′ = (r + δr (q))(n̂ + δn̂(q)) . (24)

The vector δn̂ is calculated from the changes in the angles

Φ′ = Φ + δΦ(q) , Ψ′ = Φ + δΨ(q) , θ ′ = θ + δθ (q) , (25)

according to δn̂ = n̂′−n̂. To first order in ϵ ≡ −3Q/a2(1−e2)2,
the detailed equations for the δ-quantities can be taken from
Garfinkel (1959), with slight modifications that account for the
dominating precession of the pericenter caused by the mass
monopole: the term (5y2 − 1) in the auxiliary constants m and
γ has to be replaced by 2ω̇Pb/πϵ, where ω̇ is the total advance
of the pericenter. Based on this, we have developed a timing
model that includes the contribution of the quadrupole moment
of Sgr A* to first order in ϵ. Figure 9 illustrates the unique
periodic timing residuals caused by the quadrupole moment of
Sgr A*.

This periodic signal will not only allow the determination of
the quadrupole moment of Sgr A* with high precision, but also
provide a clear identification of the quadrupolar nature of the
gravitational field. Moreover, due to the large advance of the
pericenter the quadrupolar signal will change in a characteristic
way from one orbit to the next. This clearly helps to identify
any external “contamination” of the orbital motion of the pulsar,
and, as in the spin determination, provides high confidence in
the reliability of a no-hair theorem test with a pulsar around
Sgr A*.

5.2. Simulations

We have tested the procedure outlined above in a number
of mock data simulations for various orbital configurations.
Again following the procedures described in Section 3.2, we
assume weekly TOAs with a precision of 100 µs for a time span
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Figure 10. Measurement precision for the quadrupole moment of Sgr A* as a
function of orbital period for three different eccentricities, in the absence of any
external perturbations. We have used the same orbital and black hole parameters
as in Figure 5. For the timing, we assumed the same time span and characteristics
of TOAs as in Figure 5. This time, however, the TOAs were equally distributed
with respect to the true anomaly in order to account for the fact that timing needs
to be done more frequently around the pericenter to optimize the measurement
of the quadrupolar signal in the TOAs.
(A color version of this figure is available in the online journal.)

of five years. This time we extended our simulations and the
timing model used in Section 4.2 to account for the periodic
effects due to the quadrupole moment of Sgr A* described
in Equation (24). Our results are summarized in Figure 10.
Note that the precision of the spin determination is at least one
order of magnitude better than the determination of q. Hence,
the uncertainty in the q-measurement is the limiting factor for
the no-hair theorem test. As a conclusion of our simulations,
if the external perturbations are negligible, for orbits with
Pb ! 0.5 yr the no-hair theorem can be tested with high
precision. If we adopt the precessional rates from the stellar
perturbation calculated in Figure 2, we conclude that the test
can be achieved with high precision for orbits with Pb ! 0.1 yr.
This range can be extended if the characteristic quadrupolar
features remain separable in the presence of perturbations. This,
however, depends on the details of the external mass distribution,
which we will not investigate further in this paper.

6. DISCUSSION

In this paper we have developed a method to determine the
mass, the spin, and the quadrupole moment of Sgr A* using
a pulsar in a compact orbit around this supermassive black
hole. Our investigation is based on a consistent timing model
that includes all the relativistic and precessional effects that
can be used to extract these parameters of Sgr A*. Based on
simulated timing data for a pulsar in orbit around Sgr A*,
we have shown in a consistent covariance analysis that, even
with a moderate timing precision (∼100 µs), one can expect
to be able to determine the mass, the spin, and the quadrupole
moment of Sgr A* with high precision, provided the orbital
period is well below one year. As a result of our simulations, for
a compact orbit (orbital period of a few months) one can expect
to measure the spin with a precision of 10−3 or even better.
We have shown how the method would allow the identification
of an object whose frame dragging exceeds that of an extreme
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Searching for GWs with the SKA

Assumption for the SKA limit: 100 pulsars timed with an accuracy of 20 ns, observed 
once every two weeks over 5 years.	


Improvement on the current sensitivity by several orders of magnitude! 

!12

From Yardley et al. 2010

The PPTA Sensitivity to Individual Sources of GWs 9

Figure 4. Sensitivity of some current and future GW observatories to individual GW sources as a function of frequency. The abscissa
gives the GW frequency, the ordinate gives the minimum detectable strain amplitude of a sinusoidal GW point source with a random
polarisation, phase and sky-position. For the pulsar timing array sensitivity we assume an incoherent detection scheme is used and the
GW source position is unknown. The open triangles indicate that the plotted sensitivity at that frequency is a lower bound. The plot
also shows some potentially detectable sources in the three frequency bands. The straight lines indicate the expected signals from two
different types of SMBHB if they were located in the Virgo cluster, with equal member masses 109M⊙ and 1010M⊙ as labelled. The
‘×’ symbol is the expected signal at the Earth caused by the proposed SMBHB at the core of the radio galaxy 3C66B. The ‘∗’ symbol
is the expected signal caused by the candidate SMBHB at the core of OJ287. The ‘+’ symbol is the GW strain and frequency emitted
by a typical resolvable SMBHB as plotted in Figure 2 of Sesana et al. (2009). “Unresolved galactic binaries” include white-dwarf and
neutron-star binaries. “Coalescing binary black holes” show the expected range of signals from the final inspiral of black-hole binary
systems. The “Current” LIGO sensitivity shows the capabilities of existing datasets, while “Advanced” LIGO expects to improve GW
sensitivity by two orders of magnitude. “SN [supernova] core collapse” and “NS-NS [neutron star] coalescence” are typical signals that
LIGO expects to detect.

There are three prominent losses in sensitivity - at fre-
quencies smaller than (Tobs)

−1 and at periods of one year
and six months. The partial loss in sensitivity at a period of
six months (∼ 6×10−8 Hz) is caused by fitting for the pulsar
parallax. The total loss in sensitivity at GW periods of one
year could be mitigated using independent measurements
of the position of the pulsar, for example using very-high-
precision interferometry; such precision may be available in
the SKA era.

The SKA sensitivity curve shown in Figure 4 is calcu-
lated assuming we do not know the location or frequency of
a potential GW source; using these two additional pieces of
information it will be possible to confirm or deny the bina-

rity of the massive dark object at the core of OJ287, as well
as resolve many of the SMBHBs predicted by Sesana et al.
(2009). Using the SKA and LISA, it will also be possible to
observe the full evolution of some SMBHBs from emitting
GWs in the pulsar timing band (during the early phases
of coalescence) to emitting GWs in the LISA band (during
coalescence) (Pitkin et al. 2008).

5 CONCLUSION

We have presented the strain sensitivity of the Parkes Pul-
sar Timing Array to sinusoidal point sources of GWs as a
function of frequency. The sources most likely to produce a
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Studying GW properties

SKA: also possible to study the 
properties of GWs (polarization, 

graviton mass). 	

!

The shape of the Hellings & 
Downs curve depends on the 

graviton mass!	

!

(GR: graviton mass-less).	

!

See Lee et al. 2010.	

!

Top left: expected correlation between 
residuals for pairs of pulsars for a 

stochastic GW background, and relation 
derived by Hellings & Downs (1983).
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Figure 2. Atlas for cross-correlation functions C(θ ). The label of each curve indicates the corresponding graviton mass in units of electron volts (eV). The left panel
shows the correlation functions for a 5 year bi-weekly observation. The right panel shows correlation functions for 10 years of bi-weekly observations. We take
α = −2/3 for these results. These correlations are normalized such that C(0) = 0.5 for two different pulsars.

m runs from 1 to the number of pulsar pairs M = (Np −1)Np/2,
because the autocorrelations are not used.

Following Jenet et al. (2005), we define

ρ =
∑M

m=1(C(θm) − C)(c(θm) − c)
√∑M

m=1(C(θm) − C)2
∑M

m=1(c(θm) − c)2
, (21)

where C =
∑M

m=1 C(θm)/M and c =
∑M

m=1 c(θm)/M . Then
the statistic S, describing the significance of the detection, is
S =

√
M ρ. In particular, when there is no GW present, c(θm)

will be Gaussian-like white noise, the probability of getting a
detection significance larger than S is about erfc(S/

√
2)/2 (Jenet

et al. 2005).
Our aim is to determine the ability of a given pulsar timing

array configuration to detect a GW background. To do this,
we calculate the expected value for the detection significance
S by using a second set of Monte Carlo simulations. These
second Monte Carlo simulations are similar to the first ones, but
instead of calculating the average value for C(θ ), we inject white
noise for each pulsar, to represent the intrinsic pulsar noise and
instrumental noise, and we calculate the expected value of S.
We summarize the following steps here.

1. Generate a large number of GW sources (104) to simulate
the required GW background.

2. Calculate the timing residual for each pulsar as described
above and add white Gaussian noise.

3. Calculate the measured correlation c(θm) using
Equation (20) and calculate the detection significance S
using Equation (21).

4. Repeat steps 1–3 and average over the detection signifi-
cance S. The converged S is the value needed to estimate
the detection significance.

The results for the expectation value of S, as a function of GW
amplitude Ac for various pulsar timing array configurations, are
presented in Figure 3. We have also compared simulations from
several different pulsar samples with the same number of pulsars
to make sure such S is not sensitive to the detailed configuration
of the pulsar samples.

Two features of the curves in Figure 3 are worth noting. First,
the minimal detection amplitude of a GW background becomes
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Figure 3. Expected GW background detection significance using a pulsar timing
array with 20 pulsars, observed for 5 years, with 100 ns timing noise. The
graviton mass, in units of electron volts, is labeled above each curve. The x-axis
is the amplitude for the characteristic strain of the GW background (f0 = 1 yr−1,
α = −2/3), while the y-axis is the expected detection significance S.

larger, when a massive graviton is present, i.e., the leading edge
of the S–Ac curve shifts rightwards as mg is made larger. This
tells us that in order to detect a massive GW background, one
needs a stronger GW background signal or a smaller pulsar
intrinsic noise than in the case of a massless GW background.
As previously noted, this effect is mainly due to the reduction
of the pulsar timing response and the reduction of the GW
amplitude at lower frequencies. Figure 3 also tells us when we
can neglect the effect of a massive graviton. It is clear from
Figure 3 that if mg ! 2 × 10−23 eV for a 5 year observation,
the minimal detection amplitude is not reduced by more than
5%. For 10 years of observation, a 5% reduction corresponds to
mg = 10−23 eV.

The second noteworthy feature of the S–Ac curves in Figure 3
is that of the saturation level of detection significance. Due to
the pulsar distance term of Equation (11) (the term involving the
D), the detection significance achieves a saturation level when
the GW-induced timing residuals are much stronger than the
intrinsic pulsar timing noise (Jenet et al. 2005). From Figure 3,
we note that the saturation level of detection significance is large,

Cross-correlation functions for different graviton masses, and for 5 
and 10 years of timing of 300 pulsars with 100 ns accuracy. 



L. Guillemot, 12/02/14

Studying GW properties (continued)

See Lee et al. 2008.	

!

The shape of the Hellings & Downs curve 
depends on GW polarization!	


!
GR: 2 degrees of polarization, more in 

alternative theories of gravity. 	

!

Tests of gravity theories!	

!

Required accuracies (~100 ns or so) 
achievable with the SKA. 

!14
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Fig. 2. The C(θ) curves for different kinds of GW polarization, with α denoting the
power index of the GW background.

why C(0◦) ̸= C(180◦)? It turns out that GW propagation breaks up this
180◦ symmetry by the geometric factor in Eq. (1), which reads 1+ êz · n̂ for
the massless case. For the case of a massive GW background, the geometric
factor reads 1+ c

ωg
ng · n̂, where the graviton mass reduces the asymmetry.

For the limiting case, where the GW frequency is just at the cut-off fre-
quency, the dispersion relation tells us that such a GW is not propagative,
then the 180◦ symmetry is restored. Therefore, we would expect that the
correlation function are of 180◦ symmetry for very massive gravitons.

Lee et al. (2009) further find that it is possible to measure graviton mass
using PTA and one will get 90% probability to differentiate between the
results for massless graviton and that for graviton heavier than 3 × 10−22

eV, if biweekly observation of 60 pulsars are performed for 5 years with
pulsar RMS timing accuracy of 100 ns in the future.

As we have shown that PTA can be constructed to measure the alter-
native polarization modes of GW and the GW dispersion relation. These
measurements provide tests for gravity theory in the weak field/high veloc-
ity region, which are different from that of the solar system tests (i.e., the

Cross-correlation functions for different GW 
polarizations, for various GW spectral indices, for 5 
years of timing of ~60 pulsars with 100 ns accuracy. 
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Summary - Conclusions

Pulsar studies find their applications in a 
wide range of astrophysics and 

fundamental physics. 	

!

SKA: many new pulsars, new tests of GR, 
Sgr A*, GW characterization, etc.	


!
Road to SKA: 	


• many precursors such as LOFAR: 
properties of the interstellar medium = 

crucial for timing studies!	

• SKA phase 1: sensitivity to many new 

pulsars already.
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