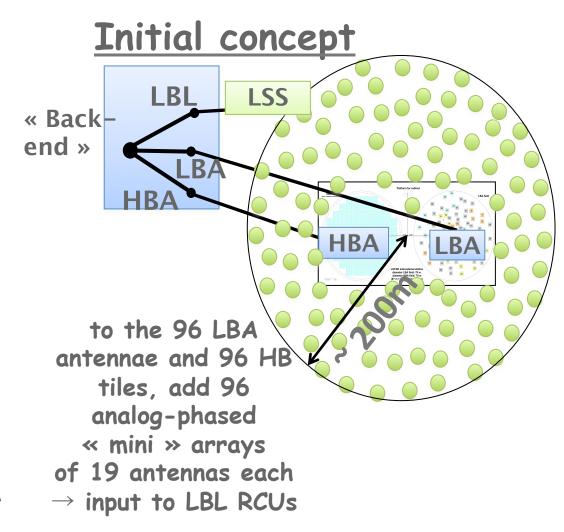
the NenuFAR project

(New Extension in Nançay Upgrading LOFAR)

P. Zarka, M. Tagger, L. Denis, J. Girard for the NenuFAR collaboration

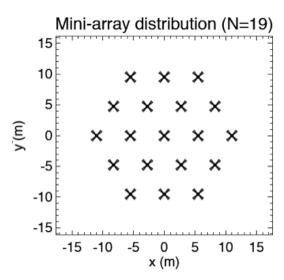
why NenuFAR


- 2006 -> LOFAR workshop, FLOW science case
- 2011 -> FR606 up and running
- two further goals
 - do more and better science
 - need to prepare a scientific community, ready for SKA
 - much broader than "traditional" LF radio
 - consolidate Nançay-Orléans-Paris as a world-visible reference
- very strong local, regional, national support for these goals

the next step

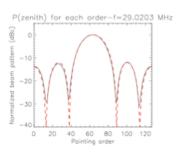
- FR606 -> we bought a LOFAR station, installed it in Nançay but
 - no use of local technical expertise
 - no specific visibility of the french community
- try to do better: rather than proposing to buy additional stations, develop an original instrument
- -> the LOFAR SuperStation (LSS) concept

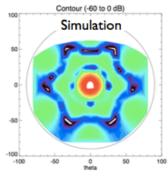
LOFAR SuperStation, initial concept

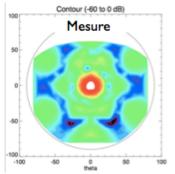

- use existing LOFAR infrastructure and multiply the number of antennae
- use available "Low-Band Low" back-end input
- 96 mini-arrays of n (=19) analog-phased antennae
- optimized for 10 85
 MHz
- can be used by LOFAR as a non-standard LBA field

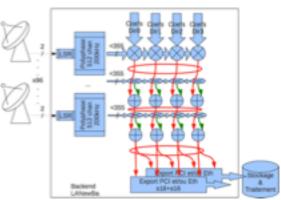
LOFAR SuperStation, ANR study

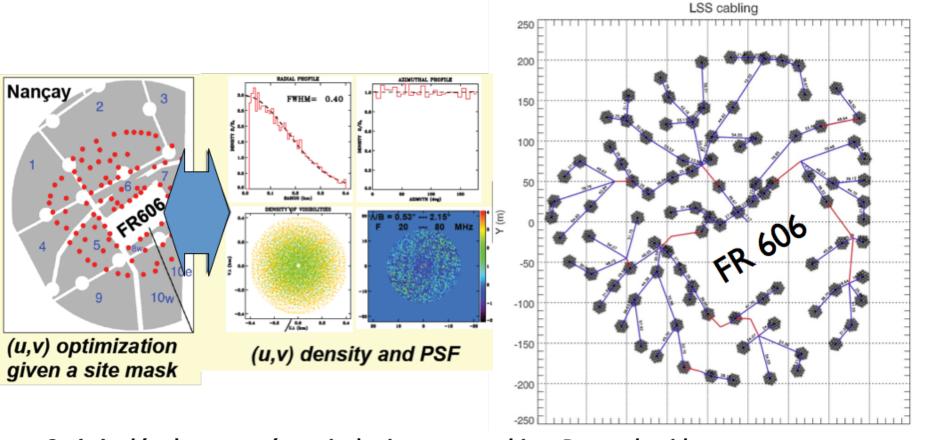
- antenna optimization -> LWA concept
- Mini-Array design -> 19 antennae/MA
- optimal distribution of the MAs
- ASIC preamplifier
- dedicated receiver
- prototype: 3 MAs
- dedicated science case
- much help from foreign colleagues!



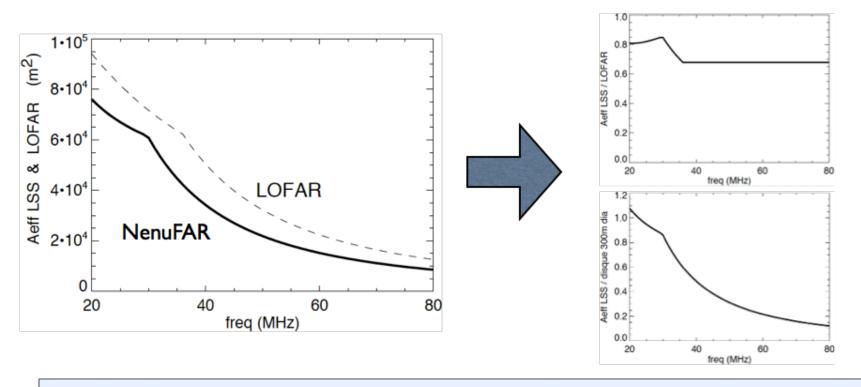

Pointing by mutualization of 7 bits analog


delay lines in two directions (x & y)
Relative gain variation between two pointing directions ≤10%
LOFAR back-end will then beamform within this « pre-pointed »
antenna beam


LOFAR SuperStation, 3 prototype MAs



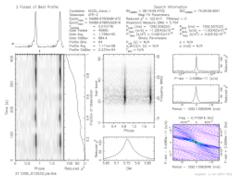
- Construction of 3 mini-arrays (x 2 polarizations)
- Definition of a standalone dedicated NenuFAR receiver (Nançay/ALSE)
 - ⇒ "duty-cycle" ~100% in the analog mini-array beam (~30° @ 30 MHz)
- Industrialization studies, site study (ONF), costing, sub-contracting, schedule

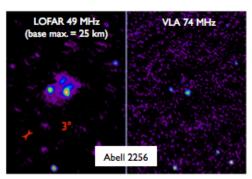

Station layout & cabling (near-final)

Scale	Layout	Phasing
Mini-array (10-20 elements)	A _{eff} & beam optimized	Analog (using cable delays)
LSS (96 MA)	(u,v) optimized	Digital (using station back-end)

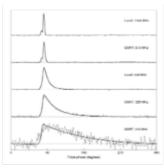
Optimized (u,v) coverage (gaussian) using pressure-driven Boone algorithm
Relative rotations of Mini Arrays to temper grating/side lobes (but keeping all antennas //)
Optimized infrastructure costs : Cable-Trench problem (total cable length ~20 km)

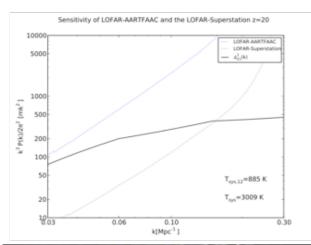
What will bring LSS/NenuFAR?

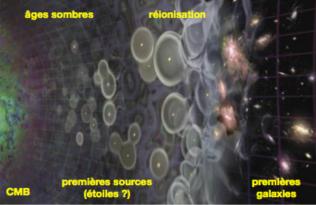



Large standalone instrument with high instantaneous sensitivity

- ~19x the sensitivity of an international LOFAR station in LBA range
- A_{eff} = 70-80% x A_{eff} LOFAR LBA = 190% x A_{eff} LOFAR core LBA
- Access to VLF (15-80 MHz)
- 2 full-band (70 MHz) full-polarization simultaneous coherent tied-array beams
- ⇒ coherent TAB mode > 2x more efficient than LOFAR
- ⇒ Instantaneous polarized imaging with 256 pixels in 8°-45° FoV within TBD bandwidth


Science case of LSS/NenuFAR





- Cosmology (dark ages) and galaxy formation
- Structure of Galactic Interstellar Medium
- Pulsars & Rotating radio transients (RRATs)
- Binary/flaring stars & Exoplanets
- The Transient Universe
- Light flashes in Terrestrial and Planetary atmospheres
- ⇒ LSS standalone, LSS+LOFAR, LSS//LOFAR

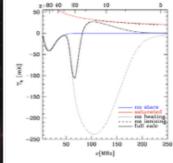
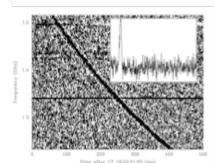
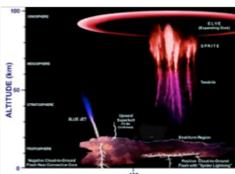
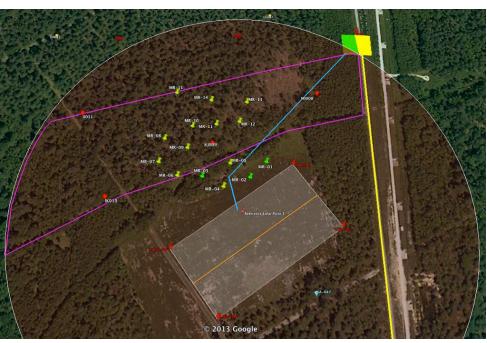




FIG. 1 (color online). Evolution of the 21 cm global signal for different scenarios. Solid blue curve: no stars, solid red curve: $T_2 \gg T_y$ and $x_{tt} = 1$; black doned curve: no beating; black dashed curve: no ionization; black solid curve: full calculation.


operating modes

- NenuFAR as a "super" LOFAR station LBA
 - short baselines -> extended objects
 (instantaneous "station" FoV ~10° @ 30 MHz)
 - $-19^{1/2}$ times more sensitive long baselines
 - or as second core
- NenuFAR as a standalone instrument
 - down to 10 MHz
 - original science case
- dedicated receiver -> both modes can be used at the same time (within MA beam)

present status

- total cost ~ 4.5 M€ (plus Nançay staff)
- (nearly) already available 1.5 M€
- -> NenuFAR phase 1, ~ 25 mini-arrays (~ 2x LWA)+ receiver + some infrastructure for next stages
- convincing enough -> offocial go-ahead, Nov. 2013
- trees have been cut, phase 1 operational within ~ 1 year
- more MAs as funding comes in for phase 2

science and data policies (our views, presented to the ILT)

- NenuFAR will appear to LOFAR as a "super" LBA field, can (doesn't have to) be used by LOFAR
- split data stream -> the dedicated receiver captures the signal before entering the LOFAR back-end
- thus NenuFAR can be used 100% of the time in standalone mode

even when used separately by LOFAR

- only constraint is the mini-array analog beam
- no use of LOFAR hardware in standalone use
- in that case LOFAR is commensal of NenuFAR...

science and data policies

(our baseline views, presented to the ILT)

main goal: optimize the scientific return of both LOFAR and NenuFAR; acknowledge help received while writing the science case

- NenuFAR will be added to LOFAR, and freely programmed by the LOFAR PC
 - no specific return asked for FLOW except a builder's list for the first few years (as in LOFAR)
- NenuFAR will also be used in stand-alone mode, programmed by a FLOW PC
 - a common-user facility, gradually opened to the community (as in LOFAR)
 - a member of LOFAR PC in FLOW PC?

to be discussed within FLOW and with our authorities...

remaining questions

- sub-arrays (NenuFAR as second core)?
 - would follow LOFAR add-on policy
- single-station use?
 - is there really a need ? (competition with standalone mode)
 - we would rather avoid that, but smart ideas welcome!

